作物学报 ›› 2023, Vol. 49 ›› Issue (1): 239-248.doi: 10.3724/SP.J.1006.2023.24009
邹晓霞1,*(), 蔺益民1, 赵亚飞1, 刘燕1, 刘娟2, 王月福1, 王维华1,*()
ZOU Xiao-Xia1,*(), LIN Yi-Min1, ZHAO Ya-Fei1, LIU Yan1, LIU Juan2, WANG Yue-Fu1, WANG Wei- Hua1,*()
摘要:
探究施钙对不同花生荚果发育时期光合碳在植株-土壤系统分配的影响, 有利于改善钙肥管理, 提升花生产量和土壤有机碳含量。本研究选用普通大花生品种‘花育22’, 设置CaO 0、75、150和300 kg hm-2 4个施钙梯度, 分别记为T0、T1、T2、T3, 于盆栽条件下研究施钙量对花生产量和不同荚果发育时期光合碳在花生植株-土壤系统中分配的影响。结果表明, 不同施钙量对花生植株总干物质积累无明显影响。适宜施钙量可显著降低花生千克果数和千克仁数, 提升花生出仁率、饱果率和荚果产量, 在2018年和2019年, T2处理荚果产量较T0可分别提升17.5%和25.1%。基于施钙量与花生荚果和籽仁产量的拟合分析发现, 当钙肥施用量为165 kg hm-2和173 kg hm-2时, 可分别获得最高的花生荚果和籽仁产量。适宜施钙量可明显提升鸡咀幼果期和荚果膨大期花生植株光合13C的积累量, 提升各荚果发育时期13C在花生籽仁中的分配比例, 其中, 在荚果定型期和籽仁充实期, T2和T3处理下13C在花生籽仁中的分配比例分别可达33.4%~37.2%和38.7%~40.0%。适宜施钙量还可提高花生植株光合13C在土壤中的分配比例, 最高可达52.6% (T2), 但随着花生荚果发育进程的推进, 此分配比例逐渐降低。综上, 适宜施钙量可调控不同花生荚果发育时期光合13C在植株-土壤系统的分配, 显著提升花生产量和光合13C在花生籽仁和土壤中的分配比例; 本研究条件下, 推荐适宜施钙量(CaO)为173 kg hm-2。
[1] |
Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2018, 131: 267-282.
doi: 10.1007/s00122-017-3000-7 |
[2] | 于天一, 郑亚萍, 邱少芬, 姜大奇, 吴正锋, 郑永美, 孙学武, 沈浦, 王才斌, 张建成. 酸化土壤施钙对不同花生品种(系)钙吸收、利用及产量的影响. 作物杂志, 2021, (4): 80-85. |
Yu T Y, Zheng Y P, Qiu S F, Jiang D Q, Wu Z F, Zheng Y M, Sun X W, Shen P, Wang C B, Zhang J C. Effects of calcium (Ca) application in acidified soil on Ca absorption, utilization and yield of different peanut varieties (lines). Crops, 2021, (4): 80-85. (in Chinese with English abstract) | |
[3] |
王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响. 作物学报, 2021, 47: 1666-1679.
doi: 10.3724/SP.J.1006.2021.04186 |
Wang J G, Zhang J L, Guo F, Tang C H, Yang S, Peng Z Y, Meng J J, Cui L, Li X G, Wan S B. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut. Acta Agron Sin, 2021, 47: 1666-1679. (in Chinese with English abstract) | |
[4] | 蔡倩, 孙占祥, 郑家明, 王文斌, 白伟, 冯良山, 杨宁, 向午燕, 张哲, 冯晨. 辽西半干旱区玉米大豆间作模式对作物干物质积累分配、产量及土地生产力的影响. 中国农业科学, 2021, 54: 909-920. |
Cai Q, Sun Z X, Zheng J M, Wang W B, Bai W, Feng L S, Yang N, Xiang W Y, Zhang Z, Feng C. Dry matter accumulation, allocation, yield and productivity of maize-soybean intercropping systems in the semi-arid region of western Liaoning province. Sci Agric Sin, 2021, 54: 909-920. (in Chinese with English abstract) | |
[5] | Gaiona L, Júniora J, Barretob R, Damião V, Prado R, Carvalho R. Amplification of gibberellins response in tomato modulates calcium metabolism and blossom end rot occurrence. Sci Hortic, 2019, 26: 498-505. |
[6] |
Arfaoui A, Hadrami A E, Daayf F. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. Plant Physiol Biochem, 2018, 122: 121-128.
doi: 10.1016/j.plaphy.2017.11.014 |
[7] |
Yang S, Li L, Zhang J, Geng Y, Guo F, Wang J, Meng J, Sui N, Wan S, Li X. Transcriptome and differential expression profiling analysis of the mechanism of Ca2+ regulation in peanut (Arachis hypogaea) pod development. Front Plant Sci, 2017, 8: 1609.
doi: 10.3389/fpls.2017.01609 pmid: 29033956 |
[8] | 张彩军, 赵亚飞, 司彤, 王月福, 张晓军, 于晓娜, 王铭伦, 邹晓霞. 钙肥施用对花生荚果不同发育时期衰老特性和产量的影响. 花生学报, 2021, 50(1): 54-59. |
Zhang C J, Zhao Y F, Si T, Wang Y F, Zhang X J, Yu X N, Wang M L, Zou X X. Effect of calcium fertilizer application on senescence characteristics and yield of peanut at different pod development stages. J Peanut Sci, 2021, 50(1): 54-59. (in Chinese with English abstract) | |
[9] |
Coskun D, Britto D T, Shi W M, Kronzucker H J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci, 2017, 22: 661-673.
doi: S1360-1385(17)30093-6 pmid: 28601419 |
[10] |
Gao J, Zhao B, Dong S T, Liu P, Ren B Z, Zhang J W. Response of summer maize photosynthate accumulation and distribution to shading stress assessed by using 13CO2stable isotope tracer in the field. Front Plant Sci, 2017, 8: 1821.
doi: 10.3389/fpls.2017.01821 |
[11] |
Bicharanloo B, Shirvan M B, Keitel C, Dijkstra F A. Nitrogen and phosphorus availability affect wheat carbon allocation pathways: rhizodeposition and mycorrhizal symbiosis. Soil Res, 2020, 58: 125-136.
doi: 10.1071/SR19183 |
[12] |
Xiao M L, Zang H D, Liu S L, Ye R Z, Zhu Z K, Su Y R, Wu J S, Ge T D. Nitrogen fertilization alters the distribution and fates of photosynthesized carbon in rice-soil systems: a 13C-CO2pulse labeling study. Plant Soil, 2019, 445: 101-112.
doi: 10.1007/s11104-019-04030-z |
[13] |
Yoneyama T, Suzuki A. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of 15N-tracing, enzymes involved, reductant supply, and nitrate signaling: a review and synthesis. Plant Physiol Biochem, 2019, 136: 245-254.
doi: 10.1016/j.plaphy.2018.12.011 |
[14] | Pausch J, Kuzyakov Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biol, 2018, 24: 13850. |
[15] |
Coskun D, Britto D T, Shi W M, Kronzucker H J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci, 2017, 22: 661-673.
doi: S1360-1385(17)30093-6 pmid: 28601419 |
[16] | 王莹莹, 肖谋良, 张昀, 袁红朝, 祝贞科, 葛体达, 吴金水, 张广才, 高晓丹. 水稻光合碳在植株-土壤系统中分配与稳定对施磷的响应. 环境科学, 2019, 40: 1957-1964. |
Wang Y Y, Xiao M L, Zhang Y, Yuan H C, Zhu Z K, Ge T D, Wu J S, Zhang G C, Gao X D. Allocation and stabilization responses of rice photosynthetic carbon in the plant-soil system to phosphorus application. Environ Sci, 2019, 40: 1957-1964. (in Chinese with English abstract) | |
[17] | 王婷婷, 祝贞科, 朱捍华, 汤珍珠, 庞静, 李宝珍, 苏以荣, 葛体达, 吴金水. 施氮和水分管理对光合碳在土壤-水稻系统间分配的量化研究. 环境科学, 2017, 38: 1227-1234. |
Wang T T, Zhu Z K, Zhu H H, Tang Z Z, Pang J, Li B Z, Su Y R, Ge T D, Wu J S. Input and Distribution of photosynthesized carbon in soil-rice system affected by water management and nitrogen fertilization. Environ Sci, 2017, 38: 1227-1234. (in Chinese with English abstract) | |
[18] | 孙海岩, 安婷婷, 谢柠桧, 李双异, 付时丰, 吕欣欣, 程娜, 闫贺明, 汪景宽. 地膜覆盖与施氮肥对光合碳在玉米-土壤系统分配的影响. 土壤通报, 2018, 49(4): 152-160. |
Sun H Y, An T T, Xie N H, Li S Y, Fu S F, Lyu X X, Cheng N, Yan H M, Wang J K. Effects of plastic film mulching and nitrogen fertilization on the distribution of photosynthetic fixed carbon in maize-soil system. Chin J Soil Sci, 2018, 49(4): 152-160. (in Chinese with English abstract) | |
[19] | 张博文, 穆青, 刘登望, 李林, 万书波, 王建国, 郭峰. 施钙对瘠薄红壤旱地花生土壤理化性质的影响. 中国油料作物学报, 2020, 42: 896-902. |
Zhang B W, Mu Q, Liu D W, Li L, Wan S B, Wang J G, Guo F. Effects of calcium application on physical and chemical properties of peanut in barren upland red soil. Chin J Oil Crop Sci, 2020, 42: 896-902. (in Chinese with English abstract) | |
[20] | 罗葆兴, 李煜祥, 温桂芳, 陈朝庆, 叶柏荣, 陈治禧. 花生荚果发育的形态解剖学研究. 作物学报, 1982, 8: 217-228. |
Luo B X, Li Y X, Wen G F, Chen C Q, Ye B R. Chen Z X. Studies on the anatomical morphology of pod development in peanut plant. Acta Agron Sin, 1982, 8: 217-228. (in Chinese with English abstract) | |
[21] | 李安妮, 叶柏荣, 刘敏敏. 花生荚果发育过程中形态及有机成分的变化. 华南农学院学报, 1983, 4(1): 21-30. |
Li A N, Ye B R, Liu M M. Changes in morphology and composition of developing peanut fruit, J South China Agric Coll, 1983, 4(1): 21-30. (in Chinese with English abstract) | |
[22] | 于鹏, 张玉玲, 王春新, 安婷婷, 邹洪涛, 付时丰, 李双异, 汪景宽, 张玉龙. 不同生育期光合碳在水稻-土壤系统中的分配. 土壤学报, 2017, 54: 1218-1229. |
Yu P, Zhang Y L, Wang C X, An T T, Zou H T, Fu S F, Li S Y, Wang J K, Zhang Y L. Distribution of photosynthetic carbon in rice-soil system relative to rice growth stage. Acta Pedol Sin, 2017, 54: 1218-1229. (in Chinese with English abstract) | |
[23] |
Charles S A, Halliwell B. Action of calcium ions on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle. Biochem J, 1980, 188: 775.
pmid: 6258561 |
[24] |
Prado F E, Lázaro J J, Gorgé J L. Regulation by Ca2+ of a cytosolic fructose-1, 6-bisphosphatase from spinach leaves. Plant Physiol, 1991, 96: 1026.
doi: 10.1104/pp.96.4.1026 pmid: 16668293 |
[25] |
Chen H, Zhang C, Cai T, Deng Y, Zhou S, Zheng Y, Ma S, Tang R, Varshney R K, Zhuang W. Identification of low Ca2+ stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL). Plant Biotechnol J, 2016, 14: 682.
doi: 10.1111/pbi.12415 pmid: 26079063 |
[26] |
Ge T, Yuan H Z, Zhu H H, Wu X H, Nie S A, Liu C, Tong C L, Wu J S, Brookes P. Biological carbon assimilation and dynamics in a flooded rice-soil system. Soil Biol Biochem, 2012, 48: 39-46.
doi: 10.1016/j.soilbio.2012.01.009 |
[27] | 王群艳, 祝贞科, 袁红朝, 隋方功, 朱捍华, 葛体达, 吴金水. 不同生育期光合碳在水稻-土壤系统中的分配及输入效率. 环境科学研究, 2016, 29: 1471-1478. |
Wang Q Y, Zhu Z K, Yuan H C, Sui F G, Zhu H H, Ge T D, Wu J S. Allocation and input efficiency of assimilated carbon in rice-soil systems at different growth stages. Res Environ Sci, 2016, 29: 1471-1478. (in Chinese with English abstract) | |
[28] | 李朋发, 江春玉, 李忠佩. 不同施肥处理对光合碳在花生-土壤系统中分配的影响. 土壤, 2019, 51: 923-928. |
Li P F, Jiang C Y, Li Z P. Effect of different fertilization methods on distribution of photosynthetic carbon in peanut-soil system using 13C pulse labeling technique. Soils, 2019, 51: 923-928. (in Chinese with English abstract) | |
[29] |
周录英, 李向东, 王丽丽, 汤笑, 林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响. 作物学报, 2008, 34: 879-885.
doi: 10.3724/SP.J.1006.2008.00879 |
Zhou L Y, Li X D, Wang L L, Tang X, Lin Y J. Effects of different Ca applications on physiological characteristics, yield and quality in peanut. Acta Agron Sin, 2008, 34: 879-885. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00879 |
|
[30] | 宇万太, 马强, 周桦. 不同施肥制度对作物产量及土壤磷钾肥力的影响. 干旱地区农业研究, 2022, 28(3): 123-128. |
Yu W T, Ma Q, Zhou H. Effects of different fertilization systems on crop yield and soil P and K fertility. Agric Res Arid Areas, 2022, 28(3): 123-128. (in Chinese with English abstract) | |
[31] | 张智, 李小坤, 丛日环, 任涛, 黄铁平, 鲁艳红. 稻田优化施肥效果与氮磷环境效益评价. 中国农业科学, 2016, 49: 906-915. |
Zhang Z, Li X K, Cong R H, Ren T, Huang T P, Lu Y H. Optimized fertilization effects and environmental benefits evaluation of nitrogen and phosphorus in the paddy soil. Sci Agric Sin, 2016, 49: 906-915. (in Chinese with English abstract) |
[1] | 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338. |
[2] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[3] | 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析[J]. 作物学报, 2021, 47(3): 546-555. |
[4] | 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331. |
[5] | 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231. |
[6] | 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967. |
[7] | 陈四龙,程增书,宋亚辉,王瑾,刘义杰,张朋娟,李玉荣. 高产高油花生品种的光合与物质生产特征[J]. 作物学报, 2019, 45(2): 276-288. |
[8] | 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879. |
[9] | 杨青华,郑博元,李蕾蕾,贾双杰,韩心培,郭家萌,王泳超,邵瑞鑫. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399. |
[10] | 赵财,王巧梅,郭瑶,殷文,樊志龙,胡发龙,于爱忠,柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响[J]. 作物学报, 2018, 44(11): 1694-1703. |
[11] | 杨沈斌, 徐莎莎, 江晓东, 石春林, 王应平, 申双和. 作物模型中单叶最大光合作用速率的温度响应修订[J]. 作物学报, 2018, 44(05): 750-761. |
[12] | 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(03): 414-422. |
[13] | 林祥,王东*. 不同底墒条件下补灌对冬小麦耗水特性、产量和水分利用效率的影响[J]. 作物学报, 2017, 43(09): 1357-1369. |
[14] | 沈杰,蔡艳,何玉亭,李启权,杜宣延,王昌全,罗定棋. 基于归一化法的烤烟干物质积累建模与特征分析[J]. 作物学报, 2017, 43(03): 442-453. |
[15] | 吴晓丽,汤永禄,李朝苏,吴春,黄钢. 秋季玉米秸秆覆盖对丘陵旱地小麦生理特性及水分利用效率的影响[J]. 作物学报, 2015, 41(06): 929-937. |
|