欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 225-238.doi: 10.3724/SP.J.1006.2023.24020

• 耕作栽培·生理生化 • 上一篇    下一篇

氮素缓解花生干旱胁迫的生理和转录调控机制

丁红(), 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香()   

  1. 山东省花生研究所, 山东青岛 266100
  • 收稿日期:2022-01-15 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-13
  • 通讯作者: 戴良香
  • 作者简介:E-mail: dingpeanut@163.com
  • 基金资助:
    国家自然科学基金项目(31971854);国家自然科学基金项目(31971856);山东省花生产业技术体系(SDAIT-04-06);山东省重大科技创新工程项目(2019JZZY010702)

Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut

DING Hong(), ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang()   

  1. Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
  • Received:2022-01-15 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-13
  • Contact: DAI Liang-Xiang
  • Supported by:
    National Natural Science Foundation of China(31971854);National Natural Science Foundation of China(31971856);Shandong Peanut Industry Technology System(SDAIT-04-06);Major Scientific and Technological Innovation Projects in Shandong Province(2019JZZY010702)

摘要:

干旱胁迫下氮素施用对植物生长发育具有重要的影响。为明确氮素提高花生抗旱性的生理和转录调控机制, 本研究对施氮、干旱及旱氮同存处理下的花生生理指标和根系转录组进行了测定。结果表明, 旱氮同存处理提高了干旱胁迫下花生生物量和叶片相对含水量。施用氮肥增加了干旱胁迫下花生根系的总酚和类黄酮含量, 提高其过氧化物酶(POD)和过氧化氢酶(CAT)活性, 降低其丙二醛(MDA)含量, 提高花生抗旱性。转录组分析表明, 施用氮肥产生5396个差异表达基因, 这些基因主要参与谷胱甘肽代谢、氮代谢和碳代谢相关过程及应激和防御反应。干旱处理和旱氮同存处理下, 次生代谢物生物合成、运输和分解代谢及碳水化合物运输和代谢这两类功能差异表达基因富集。旱氮同存处理下酚类代谢物质相关的3种途径中有51个差异基因上调表达, 207个基因下调表达。由此表明, 施用氮肥通过调控花生次生产物代谢、碳水化合物代谢等途径提高干旱胁迫下花生植株的抗氧化能力, 从而提高花生的抗旱性。

关键词: 花生, 干旱, 氮素, 抗氧化系统, 转录组

Abstract:

Nitrogen application has an important effect on plant growth and development under drought stress. The aim of this study is to clarify the physiological and transcriptional regulation mechanism of nitrogen for improving drought resistance in peanut. The physiological indexes and root transcriptome of peanut under nitrogen application, drought stress and drought and nitrogen application simultaneously exist treatments were determined. The results showed that the drought and nitrogen application simultaneously exist treatment increased peanut biomass and the relative water content of leaves under drought stress. The content of total phenols and flavonoids in peanut roots were increased by nitrogen application under drought stress. Meanwhile, the activities of POD and CAT were increased, the content of MDA was decreased, which improved the drought resistance of peanut. Transcriptome analysis showed that the relative expression of 5396 genes changed due to nitrogen application. These genes were mainly involved in glutathione metabolism, nitrogen metabolism, and carbon metabolism, as well as stress and defense responses. Under drought stress, the drought and nitrogen application simultaneously exist treatments, the differentially expressed genes of secondary metabolite biosynthesis, transportation and catabolism and carbohydrate transport and metabolism were enriched. Among the three pathways related to phenolic metabolites, 51 differential genes were up-regulated and 207 genes were down-regulated under the drought and nitrogen application simultaneously exist treatment. In conclusion, the application of nitrogen fertilizer could enhance the antioxidant capacity of peanut plants under drought stress through regulating secondary metabolites and carbohydrate metabolism, and thus improve the drought resistance of peanut.

Key words: peanut, drought stress, nitrogen, antioxidant system, transcriptome analysis

表1

qRT-PCR引物信息"

基因名称
Gene ID
GO注释
GO annotation
引物序列
Primer sequence (5°-3°)
Actin F: TTGGAATGGGTCAGAAGGATGC
R: GCTTCTTACTGAGGCACCACT
Arahy.HGTY5Y UDP葡萄糖6-脱氢酶活性, NAD结合
UDP-glucose 6-dehydrogenase activity (GO:0003979), NAD binding (GO:0051287)
F: TATCACCCAACCGTGTCAGC
R: CATCCCTACAGCAACCGGAG
Arahy.ZL9QUM O-甲基转移酶活性, 甲基化
O-methyltransferase activity (GO:0008171), Methylation (GO:0032259)
F: TTGATCTTCCCCAGGTTGTGG
R: GTGATGTCATGCTTGTCCTGC
Arahy.5I1IFA 催化活性, 氧化应激反应的调节
Catalytic activity (GO:0003824), regulation of response to oxidative stress (GO:1902882)
F: GTGGACTTGGTGGTGCTCAA
R: TGTTTTCGGCTTCACTCGGA
Arahy.JA1EPG 水解酶活性, 水解邻糖基化合物, 碳水化合物代谢
Hydrolase activity, hydrolyzing O-glycosyl compounds (GO:0004553), carbohydrate metabolic process (GO:0005975)
F: ACGCGCAGTCGTATAACAGT
R: TGGAAGAGTCCCCAGTTCCT
Arahy.WS4P7I 谷氨酸5-激酶活性, 谷氨酸-5-半醛脱氢酶活性
Glutamate 5-kinase activity (GO:0004349), Glutamate-5-semialdehyde dehydrogenase activity (GO:0004350)
F: AATGACAGTTTGGCGGGTCT
R: CCCCTGCCCAATCTTGACTT
Arahy.QWX0SS 蛋白激酶活性, 膜的整体组成
Protein kinase activity (GO:0004672), integral component of membrane (GO:0016021)
F: GTTAAGGGCGTCGCGAATG
R: TTCTGGAGCAGCATAGCCAA

表2

不同处理对花生农艺性状的影响"

处理
Treatment
生物量 Biomass (g plant-1) 根冠比Root/shoot ratio 叶片相对含水量Leaf relative water content (%)
2020 2021 2020 2021 2020 2021
WWNN 5.86 ab 5.07 b 0.14 a 0.12 a 92.54 a 96.71 a
WWNA 6.78 a 5.43 a 0.12 a 0.11 a 93.24 a 96.00 a
DSNN 5.04 b 3.71 d 0.15 a 0.12 a 72.93 c 64.71 b
DSNA 6.33 ab 4.64 c 0.13 a 0.10 a 84.39 b 84.93 a
W 0.120 0 ** 0.397 0.536 0** 0.001**
N 0.016* 0.001** 0.028* 0.046* 0.002** 0.037*
W×N 0.630 0.052 0.667 0.826 0.005** 0.028*

表3

不同处理对花生酚类物质含量的影响"

处理
Treatment
总酚含量Total phenol content (mg g-1) 类黄酮含量Flavonoid content (mg g-1)
地上部
Shoot
根系
Root
整株
Whole plant
地上部
Shoot
根系
Root
整株
Whole plant
2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021
WWNN 7.49 ab 7.41 a 5.02 a 4.62 a 7.22 ab 7.10 a 8.79 a 8.93 a 3.96 a 4.56 a 8.26 a 8.48 a
WWNA 6.97 c 6.73 b 4.96 a 4.19 b 6.72 c 6.49 b 7.19 b 7.67 b 4.09 a 4.94 a 6.80 b 7.67 b
DSNN 7.27 bc 6.81 b 4.46 a 3.41 c 6.99 bc 6.49 b 6.90 b 7.52 b 3.58 a 4.34 a 5.95 b 7.22 b
DSNA 7.83 a 7.25 a 4.87 a 4.14 b 7.40 a 6.92 a 8.87 a 7.99 ab 3.86 a 5.80 a 8.22 a 7.76 ab
W 0.212 0.668 0.183 0** 0.338 0.325 0.863 0.106 0.380 0.529 0.235 0.142
N 0.930 0.001** 0.319 0** 0.837 0** 0.764 0.020* 0.548 0.097 0.274 0.015*
W×N 0.052 0.301 0.464 0.133 0.076 0.334 0.016* 0.224 0.829 0.306 0.001** 0.315

图1

不同处理对花生根系抗氧化酶活性及丙二醛含量的影响 标以不同小写字母的柱值表示处理间在0.05水平上差异显著。处理同表2。"

图2

不同处理间样本相关性分析及花生根系差异表达基因维恩图 处理同表2。"

图3

施氮处理下差异表达基因的功能注释分析"

图4

干旱处理下差异表达基因的功能注释分析 AP2/ERF: AP2/ERF转录因子; GRAS: GRAS转录因子; WRKY: WRKY转录因子; G2-like: G2-like转录因子; LOB: 侧生器官边界结构域转录因子; bHLH: 碱性螺旋-环-螺旋转录因子; C2H2: 锌指结构转录因子; NAC: NAC转录因子; B3-ARF: B3-ARF转录因子; MYB: MYB类转录因子; MYB-related: MYB-related转录因子; B3: B3转录因子; C2C2-CO-like: C2C2-CO-like转录因子; bZIP: 碱性亮氨酸拉链类转录因子; SRS: SRS转录因子。"

图5

旱氮同存处理差异表达基因的KEGG的富集分析"

图6

不同处理下酚类物质相关途径DEGs表达分析 处理同表2。"

图7

转录组测序结果的qRT-PCR 验证 A~F为6个基因的表达趋势图; G为相关性分析图。处理同表2。**, P < 0.01。"

[1] Ding L, Lu Z, Gao L, Guo S, Shen Q. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front Plant Sci, 2018, 9: 1143.
doi: 10.3389/fpls.2018.01143 pmid: 30186291
[2] Mackay A. Climate change 2007:impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. J Environ Qual, 2008, 37: 2407.
[3] 张智猛, 戴良香, 宋文武, 丁红, 慈敦伟, 康涛, 宁堂原, 万书波. 干旱处理迫对花生品种叶片保护酶活性和渗透物质含量的影响. 作物学报, 2013, 39: 133-141.
doi: 10.3724/SP.J.1006.2013.00133
Zhang Z M, Dai L X, Song W W, Ding H, Ci D W, Kang T, Ning T Y, Wan S B. Effect of drought stresses at different growth stages on peanut leaf protective enzyme activities and osmoregulation substances content. Acta Agron Sin, 2013, 39: 133-141. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00133
[4] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析. 作物学报, 2022, 48: 1103-1118.
doi: 10.3724/SP.J.1006.2022.14055
Li A L, Feng Y N, Li P, Zhang D S, Zong Y Z, Lin W, Hao X Y. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.]. Acta Agron Sin, 2022, 48: 1103-1118. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14055
[5] 邓婉月, 冷秋彦, 杨在君, 余燕, 吴一超. 干旱胁迫对盆栽“川丹参1号”生理指标及主要活性成分含量的影响. 作物杂志, 2021, (1): 74-81.
Deng W Y, Leng Q Y, Yang Z J, Yu Y, Wu Y C. Effects of simulated drought stress on the physiological indexes and contents of active components of potted “Chuandanshen 1”. Crops, 2021, (1): 74-81. (in Chinese with English abstract)
[6] 马惠, 王琦, 赵鸣, 王红艳, 纪祥龙, 董合忠. 非生物胁迫对棉花次生代谢及棉蚜种群消长的影响. 棉花学报, 2016, 28: 324-330.
Ma H, Wang Q, Zhao M, Wang H Y, Ji X L, Dong H Z. Effects of abiotic stress on cotton secondary metabolism and cotton aphid population dynamics. Cotton Sci, 2016, 28: 324-330. (in Chinese with English abstract)
[7] Gharibi S, Tabatabaei B E S T, Saeidi G, Goli S A H. Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of achillea species. Appl Biochem Biotechnol, 2015, 178: 796-809.
doi: 10.1007/s12010-015-1909-3
[8] Aninbon C, Jogloy S, Vorasoot N, Nuchadomrong S, Patanothai A. Effect of mid-season drought on phenolic compounds in peanut genotypes with different levels of resistance to drought. Field Crops Res, 2016, 187: 127-134.
doi: 10.1016/j.fcr.2015.12.016
[9] 李丹丹, 梁宗锁, 普布卓玛, 杨宗岐, 韩蕊莲, 徐学选. 干旱胁迫对紫花苜蓿黄酮类化合物含量及其合成途径关键酶活性的影响. 西北植物学报, 2020, 40: 1380-1388.
Li D D, Liang Z S, Pubuzhuoma, Yang Z Q, Han R L, Xu X X. Flavonoids contents and flavonoids synthetic key enzyme activities in alfalfa under drought stress. Acta Bot Boreal-Occident Sin, 2020, 40: 1380-1388. (in Chinese with English abstract)
[10] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析. 作物学报, 2021, 47: 780-786.
doi: 10.3724/SP.J.1006.2021.04122
Qin T Y, Liu Y H, Sun C, Bi Z Z, Li A Y, Xu D R, Wang Y H, Zhang J L, Bai J P. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato. Acta Agron Sin, 2021, 47: 780-786. (in Chinese with English abstract)
[11] Wang K, Bu T, Cheng Q, Dong L, Su T, Chen Z, Kong F, Gong Z, Liu B, Li M. Two homologous LHY pairs negatively control soybean drought tolerance by repressing the abscisic acid responses. New Phytol, 2020, 229: 2660-2675.
doi: 10.1111/nph.17019
[12] Bhogireddy S, Xavier A, Garg V, Layland N, Varshney R K. Genome-wide transcriptome and physiological analyses provide new insights into peanut drought response mechanisms. Sci Rep, 2020, 10: 4071.
doi: 10.1038/s41598-020-60187-z pmid: 32139708
[13] 万丽云, 苏威, 李蓓, 雷永, 晏立英, 康彦平, 淮东欣, 陈玉宁, 姜慧芳, 廖伯寿. 花生苗期干旱处理后转录和代谢通路分析. 中国油料作物学报, 2018, 40: 335-343.
Wan L Y, Su W, Li B, Lei Y, Yan L Y, Kang Y P, Huan D X, Chen Y N, Jiang H F, Liao B S. Molecular analysis of formation of drought tolerance traits in peanut. Chin J Oil Crop Sci, 2018, 40: 335-343. (in Chinese with English abstract)
[14] Du Q G, Yang J, Muhammad S, Shah S, Li W X. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes. J Integr Agric, 2021, 20: 2043-2055.
doi: 10.1016/S2095-3119(20)63220-8
[15] Abid M, Tian Z, Tahir A, Cui Y, Yang L, Rizwan Z, Jiang D, Dai T. Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Front Plant Sci, 2016, 7: 981.
[16] Gou W, Zheng P F, Tian L, Gao W, Zhang L X, Akram N A, Ashraf M. Exogenous application of urea and a urease inhibitor improves drought stress tolerance in maize (Zea mays L.). J Plant Res, 2017, 130: 599-609.
doi: 10.1007/s10265-017-0933-5
[17] Agamia R A, Alamri S A M, Abd El-Mageedc T A, Abousekkend M S M, Hashemb M. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric Water Manage, 2018, 210: 261-270.
doi: 10.1016/j.agwat.2018.08.034
[18] 刘瑞显, 郭文琦, 陈兵林, 周治国. 氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响. 作物学报, 2008, 34: 1598-1607.
doi: 10.3724/SP.J.1006.2008.01598
Liu R X, Guo W Q, Chen B L, Zhou Z G. Effects of nitrogen on the antioxidant enzyme activities and endogenous hormone contents of cotton leaf under drought stress and after soil re-watering during the flowering and boll-forming stage. Acta Agron Sin, 2008, 34: 1598-1607. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01598
[19] 熊君, 王海斌, 方长旬, 邱龙, 吴文祥, 何海斌, 林文雄. 不同氮素供应下水稻酚类物质代谢关键酶基因差异表达. 植物生理与分子生物学学报, 2007, 33: 387-394.
pmid: 17960041
Xiong J, Wang H B, Fang C X, Qiu L, Wu W X, He H B, Lin W X. The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply. J Plant Physiol Mol Biol, 2007, 33: 387-394, (in Chinese with English abstract)
pmid: 17960041
[20] 卢国理, 汤利, 楚轶欧, 周文利, 苏海鹏, 刘自红, 郑毅. 单/间作条件下氮肥水平对水稻总酚和类黄酮的影响. 植物营养与肥料学报, 2008, 14: 1064-1069.
Lu G L, Tang L, Chu Y O, Zhou W L, Su H P, Liu Z H, Zheng Y. Effect of nitrogen levels on the changes of phenol and flavonoid contents under rice monocropping and intercropping system. Plant Nutr Fert Sci, 2008, 14: 1064-1069. (in Chinese with English abstract)
[21] 刘志鹏, 陈曦, 杨梦雅, 赵颖佳, 肖凯. 氮量及减灌对冬小麦旗叶生理参数和细胞保护酶活性的影响. 麦类作物学报, 2018, 38: 175-182.
Liu Z P, Chen X, Yang M Y, Zhao Y J, Xiao K. Effect of nitrogen amount and limited irrigation on physiological features of flag leaf and cellular protective enzyme activities in wheat. J Triticeae Crop, 2018, 38: 175-182. (in Chinese with English abstract)
[22] Zhang L X, Li S X, Zhang H, Liang Z S. Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. J Agron Crop Sci, 2007, 193: 387-397.
doi: 10.1111/j.1439-037X.2007.00276.x
[23] Shi H, Ma W, Song J, Lu M, Rahman S U, Bui T T X, Vu D D, Zhang H, Wang J, Zhang Y. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient- and deficient-nitrogen conditions. Tree Physiol, 2017, 37: 1457-1468.
doi: 10.1093/treephys/tpx090
[24] Wang Y, Gao S, He X, Li Y, Zhang Y, Chen W. Response of total phenols, flavonoids, minerals, and amino acids of four edible fern species to four shading treatments. PeerJ, 2020, 8: e8354.
doi: 10.7717/peerj.8354
[25] 张新业, 王雨欣, 孙艳香, 朱姝, 王聪艳, 李文静. 胡萝卜类黄酮含量的测定及DcCHS基因家族的鉴定分析. 西北农业学报, 2021, 30: 572-581.
Zhang X Y, Wang Y X, Sun Y X, Zhu S, Wang C Y, Li W J. Determination of flavonoid content in carrot (Daucus carota subsp. sativus) and identification of DcCHS gene family. Acta Agric Boreali-Occident Sin, 2021, 30: 572-581. (in Chinese with English abstract)
[26] 张蜀秋. 植物生理学实验技术教程. 北京: 科学出版社, 2011. pp 191-202.
Zhang S Q. Experimental Technology Course of Plant Physiology. Beijing: Science Press, 2011. pp 191-202 (in Chinese)
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[28] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev, 2009, 29: 185-212.
doi: 10.1051/agro:2008021
[29] Teixeira E I, George M, Herreman T, Brown H, Fletcher A, Chakwizira E, de Ruiter J, Maley S, Noble A. The impact of water and nitrogen limitation on maize biomass and resource-use efficiencies for radiation, water and nitrogen. Field Crops Res, 2014, 168: 109-118.
doi: 10.1016/j.fcr.2014.08.002
[30] Prasertsak A, Fukai S. Nitrogen availability and water stress interaction on rice growth and yield. Field Crops Res, 1997, 52: 249-260.
doi: 10.1016/S0378-4290(97)00016-6
[31] 郑瑞生, 封辉, 戴聪杰, 洪小斌, 宁秋蓉. 植物中抗氧化活性成分研究进展. 中国农学通报, 2010, 26(9): 85-90.
Zheng R S, Feng H, Dai C J, Hong X B, Ning Q R. Research progress on active antioxidant components from plants. Chin Agric Sci Bull, 2010, 26(9): 85-90 (in Chinese with English abstract).
[32] Nouraei S, Rahimmalek M, Saeidi G. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus hayek L.) as affected by drought stress. Sci Hortic (Amsterdam), 2018, 233: 378-385.
doi: 10.1016/j.scienta.2017.12.060
[33] Upadhyaya H, Panda S K, Dutta B K. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol Plant, 2008, 30: 457-468.
doi: 10.1007/s11738-008-0143-9
[34] Zhang L, Wang K, Zhang X, Zhang L. Role of nitrate nutrition in alleviation of the adverse effects of drought stress on maize cultivars: biomass production and antioxidative capacity. Pak J Bot, 2011, 43: 2869-2874.
[35] 张文云, 张建诚, 姚景珍. 氮胁迫下小麦叶片转录组分析. 中国农业科技导报, 2020, 22(11): 26-34.
doi: 10.13304/j.nykjdb.2019.0266
Zhang W Y, Zhang J C, Yao J Z. Comparative transcriptome analysis of wheat leaf in response to low nitrogen stress. J Agric Sci Technol, 2020, 22(11): 26-34 (in Chinese with English abstract).
[36] Xin W, Zhang L, Zhang W, Gao J, Yi J, Zhen X, Du M, Zhao Y, Chen L. An integrated analysis of the rice transcriptome and metabolome reveals root growth regulation mechanisms in response to nitrogen availability. Int J Mol Sci, 2019, 20: 5893.
doi: 10.3390/ijms20235893
[37] 刘婷, 尚忠林. 植物对铵态氮的吸收转运调控机制研究进展. 植物生理学报, 2016, 52: 799-809.
Liu T, Shang Z L. Research progress on molecular regulation of ammonium uptake and transport in plant. Plant Physiol J, 2016, 52: 799-809. (in Chinese with English abstract)
[38] Wang J, Jiao J, Zhou M, Jin Z, Yu Y, Liang M. Physiological and transcriptional responses of industrial rapeseed (Brassica napus) seedlings to drought and salinity stress. Int J Mol Sci, 2019, 20: 5604.
doi: 10.3390/ijms20225604
[39] Li S, Fan C, Li Y, Zhang J, Sun J, Chen Y, Tian C, Su X, Lu M, Liang C, Hu Z. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genomics, 2016, 17: 200.
doi: 10.1186/s12864-016-2562-0
[40] Baillo E H, Kimotho R N, Zhang Z, Xu P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes-Basel, 2019, 10: 771.
[41] Seo J S, Joo J, Kim M J, Kim Y K, Nahm B H, Sang I S, Cheong J J, Lee J S, Kim J K, Yang D C. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J, 2011, 65: 907-921.
doi: 10.1111/j.1365-313X.2010.04477.x
[42] Zhang X, Zhang B, Li M J, Yin X M, Huang L F, Cui Y C, Wang M L, Xia X. OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis. J Plant Biol, 2016, 59: 271-281.
doi: 10.1007/s12374-016-0539-9
[43] Gai Z, Wang Y, Ding Y, Qian W, Qiu C, Xie H, Sun L, Jiang Z, Ma Q, Wang L, Ding Z. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci Rep (UK), 2020, 10: 12275.
doi: 10.1038/s41598-020-69080-1 pmid: 32704005
[44] Lu M, Chen M, Song J, Wang Y, Pan Y, Wang C, Pang J, Fan J, Zhang Y. Anatomy and transcriptome analysis in leaves revealed how nitrogen (N) availability influence drought acclimation of Populus. Trees, 2019, 33: 1003-1014.
doi: 10.1007/s00468-019-01834-5
[1] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[2] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
[3] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[4] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[5] 蒋岩, 赵灿, 陈越, 刘光明, 赵凌天, 廖平强, 王维领, 许轲, 李国辉, 吴文革, 霍中洋. 氮素穗肥对粳米淀粉特性和结构的影响及其与食用特征的关系[J]. 作物学报, 2023, 49(1): 200-210.
[6] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
[7] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[8] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[9] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[10] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[11] 徐扬, 张智猛, 丁红, 秦斐斐, 张冠初, 戴良香. 钙肥对酸性红壤花生种子萌发及种子际微生物菌群结构的调控[J]. 作物学报, 2022, 48(8): 2088-2099.
[12] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响[J]. 作物学报, 2022, 48(7): 1730-1745.
[13] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[14] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[15] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[8] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[9] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[10] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .