欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 239-248.doi: 10.3724/SP.J.1006.2023.24009

• 耕作栽培·生理生化 • 上一篇    下一篇

施钙量对不同花生荚果发育时期光合碳在植株-土壤系统分配的影响

邹晓霞1,*(), 蔺益民1, 赵亚飞1, 刘燕1, 刘娟2, 王月福1, 王维华1,*()   

  1. 1青岛农业大学农学院 / 山东省旱作农业技术重点实验室, 山东青岛 266109
    2河南省农业科学院经济作物研究所, 河南郑州 450002
  • 收稿日期:2022-01-06 接受日期:2022-06-07 出版日期:2023-01-12 网络出版日期:2022-07-08
  • 通讯作者: 邹晓霞,王维华
  • 基金资助:
    国家重点研发计划项目(2020YFD1000905);山东省自然科学基金青年基金项目(ZR2019QC016)

Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages

ZOU Xiao-Xia1,*(), LIN Yi-Min1, ZHAO Ya-Fei1, LIU Yan1, LIU Juan2, WANG Yue-Fu1, WANG Wei- Hua1,*()   

  1. 1College of Agronomy, Qingdao Agricultural University / Shandong Provincial Key Laboratory of Dryland Farming Technology, Qingdao 266109, Shandong, China
    2Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2022-01-06 Accepted:2022-06-07 Published:2023-01-12 Published online:2022-07-08
  • Contact: ZOU Xiao-Xia,WANG Wei- Hua
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000905);Youth Fund Project of National Natural Science Foundation of Shandong Province(ZR2019QC016)

摘要:

探究施钙对不同花生荚果发育时期光合碳在植株-土壤系统分配的影响, 有利于改善钙肥管理, 提升花生产量和土壤有机碳含量。本研究选用普通大花生品种‘花育22’, 设置CaO 0、75、150和300 kg hm-2 4个施钙梯度, 分别记为T0、T1、T2、T3, 于盆栽条件下研究施钙量对花生产量和不同荚果发育时期光合碳在花生植株-土壤系统中分配的影响。结果表明, 不同施钙量对花生植株总干物质积累无明显影响。适宜施钙量可显著降低花生千克果数和千克仁数, 提升花生出仁率、饱果率和荚果产量, 在2018年和2019年, T2处理荚果产量较T0可分别提升17.5%和25.1%。基于施钙量与花生荚果和籽仁产量的拟合分析发现, 当钙肥施用量为165 kg hm-2和173 kg hm-2时, 可分别获得最高的花生荚果和籽仁产量。适宜施钙量可明显提升鸡咀幼果期和荚果膨大期花生植株光合13C的积累量, 提升各荚果发育时期13C在花生籽仁中的分配比例, 其中, 在荚果定型期和籽仁充实期, T2和T3处理下13C在花生籽仁中的分配比例分别可达33.4%~37.2%和38.7%~40.0%。适宜施钙量还可提高花生植株光合13C在土壤中的分配比例, 最高可达52.6% (T2), 但随着花生荚果发育进程的推进, 此分配比例逐渐降低。综上, 适宜施钙量可调控不同花生荚果发育时期光合13C在植株-土壤系统的分配, 显著提升花生产量和光合13C在花生籽仁和土壤中的分配比例; 本研究条件下, 推荐适宜施钙量(CaO)为173 kg hm-2

关键词: 13C脉冲标记, 光合碳, 干物质积累, 籽仁发育, 土壤碳积累

Abstract:

Investigating the effects of calcium application on the distribution of photosynthetic carbon in the plant-soil system at different stages of the development of peanut pods will help improve the management of calcium fertilizer, and increase the yield of peanut, and the concentration of soil organic carbon. In this study, the common large peanut variety ‘Huayu 22’ was selected, and four gradients of calcium were applied. They included CaO 0 kg hm-2, 75 kg hm-2, 150 kg hm-2, and 300 kg hm-2, and were designated T0, T1, T2, and T3, respectively. These treatments were established to explore the effects of calcium application on peanut yield and the distribution of photosynthetic carbon in the plant-soil system at different stages of peanut pod development. The results showed that the total dry matter accumulation of peanut plants was not affected by the application of different amounts of calcium. The application of a suitable amount of calcium significantly reduced the number of peanut fruit and kernel per kilogram, increased the kernel percent, full pod percent and pod yield, and in 2018 and 2019, the T2 treatment increased the pod yield by 17.5% and 25.1% compared with T0, respectively. A fitting analysis of the calcium applied with the peanut pod and kernel yield revealed that the highest peanut pod and kernel yield could be obtained when the calcium applications were 165 kg hm-2 and 173 kg hm-2, respectively. The application of a suitable amount of calcium significantly increased the photosynthetic 13C accumu-lation in peanut plants at the young fruit and pod bulking stages, increased the proportion of 13C in peanut kernels at different pod development and the pod setting and kernel filling stages. The proportion of 13C in the peanut kernels under the T2 and T3 treatments was 33.4%-37.2% and 38.7%-40.0%, respectively. The proportion of 13C in the soil also increased when a suitable amount of calcium was applied. The increase was as high as 52.6% (T2), but with the development in peanut pods, the proportion of 13C in soil decreased gradually. In conclusion, the application of an appropriate amount of calcium can regulate the distribution of photosynthetic 13C in the plant-soil system at different pod development stages of peanut and significantly improved the peanut yield and proportion of photosynthetic 13C in peanut kernel and soil. Under the conditions of this study, the recommended amount of calcium to apply was 173 kg hm-2.

Key words: 13C pulse labeling, photosynthetic carbon, dry matter accumulation, peanut kernel development, soil carbon accumulation

表1

13C脉冲标记时期"

下针后天数
Days after pegging (d)
荚果发育时期
Pod development period
6 鸡咀幼果期Young fruit stage
18 荚果膨大期Pod bulking stage
30 荚果定型期Pod setting stage
48 籽仁充实期Kernel filling stage

表2

不同施钙量对花生植株各器官干物质积累的影响"

年份
Year
花生植株器官
Peanut organ
处理Treatment
T0 T1 T2 T3
2018 茎Stem 15.90±0.83 a 14.11±0.44 b 13.92±0.27 b 14.32±0.12 b
叶Leaf 9.29±1.30 a 9.32±0.59 a 9.34±1.17 a 9.89±1.65 a
荚果Pod 29.93±1.53 d 32.84±1.11 c 40.5±1.89 a 36.67±1.42 b
根Root 3.92±0.54 a 3.58±0.30 a 3.08±0.35 a 2.95±0.32 a
果针Peg 3.10±0.32 a 3.19±0.23 a 2.66±0.28 a 2.53±0.71 a
总干重Total dry matter 62.14±4.22 a 63.04±3.17 a 69.50±4.86 a 66.36±4.12 a
2019 茎Stem 11.74±0.14 a 11.06±1.41 ab 10.79±0.32 b 10.49±0.12 b
叶Leaf 8.74±2.39 a 9.02±2.08 a 10.60±0.94 a 9.76±2.29 a
荚果Pod 26.13±1.96 b 28.33±1.65 b 31.83±1.65 a 29.26±1.9 ab
根Root 3.17±0.40 a 3.11±0.29 a 3.09±0.22 a 2.69±0.16 a
果针Peg 2.38±0.36 a 2.22±0.72 a 2.88±0.45 a 2.34±0.20 a
总干重Total dry matter 52.18±5.28 a 53.74±6.17 a 59.19±3.60 a 54.56±4.69 a

图1

施钙处理对不同荚果发育时期下花生植株各器官13C积累量的影响 不同小写字母表示同一标记时期内花生植株总13C积累量在不同施钙量间差异显著(P < 0.05)。YFS: 鸡咀幼果期; PBS: 荚果膨大期; PSS: 荚果定型期; KFS: 籽仁充实期。处理同表2。"

图2

施钙处理对不同荚果发育时期下花生植株各器官13C分配的影响 不同小写字母表示同一标记时期内花生各器官13C分配比例在不同施钙量间差异显著(P < 0.05)。YFS: 鸡咀幼果期; PBS: 荚果膨大期; PSS: 荚果定型期; KFS: 籽仁充实期。处理同表2。"

图3

施钙处理对不同荚果发育时期下0~20 cm土层土壤13C积累量的影响 不同小写字母表示同一标记时期内土壤13C积累量在不同施钙处理间差异显著(P < 0.05)。YFS: 鸡咀幼果期; PBS: 荚果膨大期; PSS: 荚果定型期; KFS: 籽仁充实期。处理同表2。"

图4

施钙处理对不同荚果发育时期下13C在花生-土壤系统中分配比例的影响 不同小写字母表示同一标记时期内不同处理间13C积累量在花生植株或土壤中的分配比例差异显著(P < 0.05)。YFS: 鸡咀幼果期; PBS: 荚果膨大期; PSS: 荚果定型期; KFS: 籽仁充实期。处理同表2。"

图5

施钙处理对花生-土壤系统13C积累量影响的主成分分析 缩写同图1。"

表3

不同施钙量对花生产量及产量性状的影响"

年份
Year
产量及产量性状
Yield and its characteristics
处理Treatment
T0 T1 T2 T3
2018 荚果产量Yield (kg 667 m-2) 335.01±17.28 b 351.75±20.11 b 393.75±18.88 a 367.87±13.49 ab
千克果数Pod number per kg 684±45 a 663±33 a 597±35 b 650±6 a
千克仁数Kernel number per kg 1234±48 a 1204±39 ab 1137±36 b 1167±41 ab
出仁率Kernel percent (%) 66.1±1.1 b 67.0±4.2 ab 71.2±2.4 a 68.9±2.9 a
双仁果率Double-seed pod percent (%) 56.0±1.0 a 57.0±2.2 a 59.1±3.9 a 58.5±3.8 a
饱果率Full pod percent (%) 46.2±5.4 b 50.1±4.3 b 58.8±4.1 a 56.3±1.3 ab
2019 荚果产量Yield (kg 667 m-2) 296.96±21.54 b 311.67±22.56 b 371.36±25.47 a 335.3±23.97 ab
千克果数Pod number per kg 721±42 a 695±41 ab 618±37 c 650±38 bc
千克仁数Kernel number per kg 1338±62 a 1272±56 ab 1179±48 b 1258±43 ab
出仁率Kernel percent (%) 62.4±2.2 b 65.9±2.5 b 71.9±3.0 a 67.6±2.8 ab
双仁果率Double-seed pod percent (%) 61.1±2.4 a 60.3±2.4 a 63.7±2.6 a 62.7±2.5 a
饱果率Full pod percent (%) 52.0±2.0 b 53.3±2.9 b 64.3±4.0 a 53.2±3.4 b

图6

施钙量与花生荚果产量和籽仁产量的多项式拟合"

[1] Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2018, 131: 267-282.
doi: 10.1007/s00122-017-3000-7
[2] 于天一, 郑亚萍, 邱少芬, 姜大奇, 吴正锋, 郑永美, 孙学武, 沈浦, 王才斌, 张建成. 酸化土壤施钙对不同花生品种(系)钙吸收、利用及产量的影响. 作物杂志, 2021, (4): 80-85.
Yu T Y, Zheng Y P, Qiu S F, Jiang D Q, Wu Z F, Zheng Y M, Sun X W, Shen P, Wang C B, Zhang J C. Effects of calcium (Ca) application in acidified soil on Ca absorption, utilization and yield of different peanut varieties (lines). Crops, 2021, (4): 80-85. (in Chinese with English abstract)
[3] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响. 作物学报, 2021, 47: 1666-1679.
doi: 10.3724/SP.J.1006.2021.04186
Wang J G, Zhang J L, Guo F, Tang C H, Yang S, Peng Z Y, Meng J J, Cui L, Li X G, Wan S B. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut. Acta Agron Sin, 2021, 47: 1666-1679. (in Chinese with English abstract)
[4] 蔡倩, 孙占祥, 郑家明, 王文斌, 白伟, 冯良山, 杨宁, 向午燕, 张哲, 冯晨. 辽西半干旱区玉米大豆间作模式对作物干物质积累分配、产量及土地生产力的影响. 中国农业科学, 2021, 54: 909-920.
Cai Q, Sun Z X, Zheng J M, Wang W B, Bai W, Feng L S, Yang N, Xiang W Y, Zhang Z, Feng C. Dry matter accumulation, allocation, yield and productivity of maize-soybean intercropping systems in the semi-arid region of western Liaoning province. Sci Agric Sin, 2021, 54: 909-920. (in Chinese with English abstract)
[5] Gaiona L, Júniora J, Barretob R, Damião V, Prado R, Carvalho R. Amplification of gibberellins response in tomato modulates calcium metabolism and blossom end rot occurrence. Sci Hortic, 2019, 26: 498-505.
[6] Arfaoui A, Hadrami A E, Daayf F. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. Plant Physiol Biochem, 2018, 122: 121-128.
doi: 10.1016/j.plaphy.2017.11.014
[7] Yang S, Li L, Zhang J, Geng Y, Guo F, Wang J, Meng J, Sui N, Wan S, Li X. Transcriptome and differential expression profiling analysis of the mechanism of Ca2+ regulation in peanut (Arachis hypogaea) pod development. Front Plant Sci, 2017, 8: 1609.
doi: 10.3389/fpls.2017.01609 pmid: 29033956
[8] 张彩军, 赵亚飞, 司彤, 王月福, 张晓军, 于晓娜, 王铭伦, 邹晓霞. 钙肥施用对花生荚果不同发育时期衰老特性和产量的影响. 花生学报, 2021, 50(1): 54-59.
Zhang C J, Zhao Y F, Si T, Wang Y F, Zhang X J, Yu X N, Wang M L, Zou X X. Effect of calcium fertilizer application on senescence characteristics and yield of peanut at different pod development stages. J Peanut Sci, 2021, 50(1): 54-59. (in Chinese with English abstract)
[9] Coskun D, Britto D T, Shi W M, Kronzucker H J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci, 2017, 22: 661-673.
doi: S1360-1385(17)30093-6 pmid: 28601419
[10] Gao J, Zhao B, Dong S T, Liu P, Ren B Z, Zhang J W. Response of summer maize photosynthate accumulation and distribution to shading stress assessed by using 13CO2stable isotope tracer in the field. Front Plant Sci, 2017, 8: 1821.
doi: 10.3389/fpls.2017.01821
[11] Bicharanloo B, Shirvan M B, Keitel C, Dijkstra F A. Nitrogen and phosphorus availability affect wheat carbon allocation pathways: rhizodeposition and mycorrhizal symbiosis. Soil Res, 2020, 58: 125-136.
doi: 10.1071/SR19183
[12] Xiao M L, Zang H D, Liu S L, Ye R Z, Zhu Z K, Su Y R, Wu J S, Ge T D. Nitrogen fertilization alters the distribution and fates of photosynthesized carbon in rice-soil systems: a 13C-CO2pulse labeling study. Plant Soil, 2019, 445: 101-112.
doi: 10.1007/s11104-019-04030-z
[13] Yoneyama T, Suzuki A. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of 15N-tracing, enzymes involved, reductant supply, and nitrate signaling: a review and synthesis. Plant Physiol Biochem, 2019, 136: 245-254.
doi: 10.1016/j.plaphy.2018.12.011
[14] Pausch J, Kuzyakov Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biol, 2018, 24: 13850.
[15] Coskun D, Britto D T, Shi W M, Kronzucker H J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci, 2017, 22: 661-673.
doi: S1360-1385(17)30093-6 pmid: 28601419
[16] 王莹莹, 肖谋良, 张昀, 袁红朝, 祝贞科, 葛体达, 吴金水, 张广才, 高晓丹. 水稻光合碳在植株-土壤系统中分配与稳定对施磷的响应. 环境科学, 2019, 40: 1957-1964.
Wang Y Y, Xiao M L, Zhang Y, Yuan H C, Zhu Z K, Ge T D, Wu J S, Zhang G C, Gao X D. Allocation and stabilization responses of rice photosynthetic carbon in the plant-soil system to phosphorus application. Environ Sci, 2019, 40: 1957-1964. (in Chinese with English abstract)
[17] 王婷婷, 祝贞科, 朱捍华, 汤珍珠, 庞静, 李宝珍, 苏以荣, 葛体达, 吴金水. 施氮和水分管理对光合碳在土壤-水稻系统间分配的量化研究. 环境科学, 2017, 38: 1227-1234.
Wang T T, Zhu Z K, Zhu H H, Tang Z Z, Pang J, Li B Z, Su Y R, Ge T D, Wu J S. Input and Distribution of photosynthesized carbon in soil-rice system affected by water management and nitrogen fertilization. Environ Sci, 2017, 38: 1227-1234. (in Chinese with English abstract)
[18] 孙海岩, 安婷婷, 谢柠桧, 李双异, 付时丰, 吕欣欣, 程娜, 闫贺明, 汪景宽. 地膜覆盖与施氮肥对光合碳在玉米-土壤系统分配的影响. 土壤通报, 2018, 49(4): 152-160.
Sun H Y, An T T, Xie N H, Li S Y, Fu S F, Lyu X X, Cheng N, Yan H M, Wang J K. Effects of plastic film mulching and nitrogen fertilization on the distribution of photosynthetic fixed carbon in maize-soil system. Chin J Soil Sci, 2018, 49(4): 152-160. (in Chinese with English abstract)
[19] 张博文, 穆青, 刘登望, 李林, 万书波, 王建国, 郭峰. 施钙对瘠薄红壤旱地花生土壤理化性质的影响. 中国油料作物学报, 2020, 42: 896-902.
Zhang B W, Mu Q, Liu D W, Li L, Wan S B, Wang J G, Guo F. Effects of calcium application on physical and chemical properties of peanut in barren upland red soil. Chin J Oil Crop Sci, 2020, 42: 896-902. (in Chinese with English abstract)
[20] 罗葆兴, 李煜祥, 温桂芳, 陈朝庆, 叶柏荣, 陈治禧. 花生荚果发育的形态解剖学研究. 作物学报, 1982, 8: 217-228.
Luo B X, Li Y X, Wen G F, Chen C Q, Ye B R. Chen Z X. Studies on the anatomical morphology of pod development in peanut plant. Acta Agron Sin, 1982, 8: 217-228. (in Chinese with English abstract)
[21] 李安妮, 叶柏荣, 刘敏敏. 花生荚果发育过程中形态及有机成分的变化. 华南农学院学报, 1983, 4(1): 21-30.
Li A N, Ye B R, Liu M M. Changes in morphology and composition of developing peanut fruit, J South China Agric Coll, 1983, 4(1): 21-30. (in Chinese with English abstract)
[22] 于鹏, 张玉玲, 王春新, 安婷婷, 邹洪涛, 付时丰, 李双异, 汪景宽, 张玉龙. 不同生育期光合碳在水稻-土壤系统中的分配. 土壤学报, 2017, 54: 1218-1229.
Yu P, Zhang Y L, Wang C X, An T T, Zou H T, Fu S F, Li S Y, Wang J K, Zhang Y L. Distribution of photosynthetic carbon in rice-soil system relative to rice growth stage. Acta Pedol Sin, 2017, 54: 1218-1229. (in Chinese with English abstract)
[23] Charles S A, Halliwell B. Action of calcium ions on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle. Biochem J, 1980, 188: 775.
pmid: 6258561
[24] Prado F E, Lázaro J J, Gorgé J L. Regulation by Ca2+ of a cytosolic fructose-1, 6-bisphosphatase from spinach leaves. Plant Physiol, 1991, 96: 1026.
doi: 10.1104/pp.96.4.1026 pmid: 16668293
[25] Chen H, Zhang C, Cai T, Deng Y, Zhou S, Zheng Y, Ma S, Tang R, Varshney R K, Zhuang W. Identification of low Ca2+ stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL). Plant Biotechnol J, 2016, 14: 682.
doi: 10.1111/pbi.12415 pmid: 26079063
[26] Ge T, Yuan H Z, Zhu H H, Wu X H, Nie S A, Liu C, Tong C L, Wu J S, Brookes P. Biological carbon assimilation and dynamics in a flooded rice-soil system. Soil Biol Biochem, 2012, 48: 39-46.
doi: 10.1016/j.soilbio.2012.01.009
[27] 王群艳, 祝贞科, 袁红朝, 隋方功, 朱捍华, 葛体达, 吴金水. 不同生育期光合碳在水稻-土壤系统中的分配及输入效率. 环境科学研究, 2016, 29: 1471-1478.
Wang Q Y, Zhu Z K, Yuan H C, Sui F G, Zhu H H, Ge T D, Wu J S. Allocation and input efficiency of assimilated carbon in rice-soil systems at different growth stages. Res Environ Sci, 2016, 29: 1471-1478. (in Chinese with English abstract)
[28] 李朋发, 江春玉, 李忠佩. 不同施肥处理对光合碳在花生-土壤系统中分配的影响. 土壤, 2019, 51: 923-928.
Li P F, Jiang C Y, Li Z P. Effect of different fertilization methods on distribution of photosynthetic carbon in peanut-soil system using 13C pulse labeling technique. Soils, 2019, 51: 923-928. (in Chinese with English abstract)
[29] 周录英, 李向东, 王丽丽, 汤笑, 林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响. 作物学报, 2008, 34: 879-885.
doi: 10.3724/SP.J.1006.2008.00879
Zhou L Y, Li X D, Wang L L, Tang X, Lin Y J. Effects of different Ca applications on physiological characteristics, yield and quality in peanut. Acta Agron Sin, 2008, 34: 879-885. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00879
[30] 宇万太, 马强, 周桦. 不同施肥制度对作物产量及土壤磷钾肥力的影响. 干旱地区农业研究, 2022, 28(3): 123-128.
Yu W T, Ma Q, Zhou H. Effects of different fertilization systems on crop yield and soil P and K fertility. Agric Res Arid Areas, 2022, 28(3): 123-128. (in Chinese with English abstract)
[31] 张智, 李小坤, 丛日环, 任涛, 黄铁平, 鲁艳红. 稻田优化施肥效果与氮磷环境效益评价. 中国农业科学, 2016, 49: 906-915.
Zhang Z, Li X K, Cong R H, Ren T, Huang T P, Lu Y H. Optimized fertilization effects and environmental benefits evaluation of nitrogen and phosphorus in the paddy soil. Sci Agric Sin, 2016, 49: 906-915. (in Chinese with English abstract)
[1] 陈志青, 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏, 张洪程. 外源钼对水稻产量形成及氮素利用的影响[J]. 作物学报, 2022, 48(9): 2325-2338.
[2] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[3] 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析[J]. 作物学报, 2021, 47(3): 546-555.
[4] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[5] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[6] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[7] 陈四龙,程增书,宋亚辉,王瑾,刘义杰,张朋娟,李玉荣. 高产高油花生品种的光合与物质生产特征[J]. 作物学报, 2019, 45(2): 276-288.
[8] 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879.
[9] 杨青华,郑博元,李蕾蕾,贾双杰,韩心培,郭家萌,王泳超,邵瑞鑫. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399.
[10] 赵财,王巧梅,郭瑶,殷文,樊志龙,胡发龙,于爱忠,柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响[J]. 作物学报, 2018, 44(11): 1694-1703.
[11] 杨沈斌, 徐莎莎, 江晓东, 石春林, 王应平, 申双和. 作物模型中单叶最大光合作用速率的温度响应修订[J]. 作物学报, 2018, 44(05): 750-761.
[12] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(03): 414-422.
[13] 林祥,王东*. 不同底墒条件下补灌对冬小麦耗水特性、产量和水分利用效率的影响[J]. 作物学报, 2017, 43(09): 1357-1369.
[14] 沈杰,蔡艳,何玉亭,李启权,杜宣延,王昌全,罗定棋. 基于归一化法的烤烟干物质积累建模与特征分析[J]. 作物学报, 2017, 43(03): 442-453.
[15] 吴晓丽,汤永禄,李朝苏,吴春,黄钢. 秋季玉米秸秆覆盖对丘陵旱地小麦生理特性及水分利用效率的影响[J]. 作物学报, 2015, 41(06): 929-937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[7] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[8] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[9] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[10] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .