欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 249-261.doi: 10.3724/SP.J.1006.2023.23010

• 耕作栽培·生理生化 • 上一篇    下一篇

不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响

陈冰洁(), 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林()   

  1. 河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室 / 2011河南粮食作物协同创新中心 / 作物生长发育调控教育部重点实验室, 河南郑州 450002
  • 收稿日期:2022-01-18 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-16
  • 通讯作者: 张学林
  • 作者简介:E-mail: Yihao20201122@163.com
  • 基金资助:
    河南省自然科学基金项目(182300410013);河南农业大学科技创新基金项目(30500712)

Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms

CHEN Bing-Jie(), ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin()   

  1. Agronomy College, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science / Collaborative Innovation Center of Henan Grain Crops in 2011 / Key Laboratory of Regulating and Controlling Crop Growth and Development Ministry of Education, Zhengzhou 450002, Henan, China
  • Received:2022-01-18 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-16
  • Contact: ZHANG Xue-Lin
  • Supported by:
    Natural Science Foundation of Henan Province(182300410013);Science and Technology Innovation Fund of Henan Agricultural University(30500712)

摘要:

明确不同形态氮肥条件下丛枝菌根真菌(Arbuscular Mycorrhizal Fungi, AMF)对灌浆期玉米生理特性及籽粒产量和品质的影响, 为合理配施农田生物肥料、提高产量和改善籽粒品质提供理论依据。2018年和2019年2个玉米生育季, 采用分室(生长室和菌丝室)箱体装置, 设置氮肥形态和丛枝菌根真菌双因素试验, 测定灌浆期籽粒和穗位叶氮代谢关键酶活性以及籽粒产量、植株生物量、植株氮素积累量和根系特性等性状。结果表明, AMF可增加玉米灌浆期叶片叶绿素含量和叶面积, 促进光合作用进行, 调节氮代谢关键酶活性, 从而提高玉米产量, 改善籽粒品质, 且在不同氮肥形态下影响不同。与M0处理均值相比, 铵态氮肥处理下M1产量和籽粒氮素积累量分别增加85%和140%; 硝态氮肥处理下产量和籽粒氮素积累量分别增加36%和81%。与M0处理均值相比, 铵态氮肥处理下M1粗蛋白含量、粗淀粉含量和赖氨酸含量分别增加9%、6%和7%, 粗脂肪含量减少19%; 硝态氮肥处理下粗蛋白含量和赖氨酸含量分别增加10%和8%, 粗脂肪含量减少32%。本研究表明, 在不同氮肥形态下接种AMF均能够提高玉米产量, 增加玉米籽粒粗蛋白含量和赖氨酸含量, 改善玉米籽粒品质。

关键词: 丛枝菌根真菌, 氮肥形态, 玉米产量, 籽粒品质

Abstract:

Clarifying the effect of arbuscular mycorrhizae fungi (AMF) on maize physiological characteristics and grain yield and their quality at grain filling stages could provide a theoretical basis for the reasonable application of biological fertilizer in farmland, which can increase maize yield and improve grain quality. In maize growing season of 2018 and 2019, the two-factors pot experiments were carried out by compartment box devices. The factors were nitrogen (N) fertilizer forms (NH4+-N: ammonium nitrogen fertilizer; NO3--N: nitrate nitrogen fertilizer), and arbuscular mycorrhizal fungi (M0: neither root nor arbuscular mycorrhizal fungi could enter the hyphal chamber from the growth chamber; M1: only arbuscular mycorrhizal fungi could enter the hyphal chamber from the growth chamber). The key enzymes activities of N metabolism in grains and ear leaves, grain yield, plant biomass, plant N accumulation, and root characteristic parameters were measured. The results showed that AMF could increase leaf chlorophyll content and leaf area, promote photosynthesis, and regulate the key enzymes activities of N metabolism at grain filling stage, thus improving maize yield and quality. This effect was different between N fertilizer forms. Compared with M0, maize yield and grain N accumulation of M1 for NH4+-N fertilizer treatment increased by 85% and 140%, respectively. For NO3--N treatment, maize yield and grain N accumulation of M1 increased by 36% and 81%, respectively. Compared with M0, crude protein content, crude starch content, and lysine content of M1 for NH4+-N fertilizer treatment increased by 9%, 6%, and 7%, while crude fat content reduced by 19%, respectively. For NO3--N treatment, crude protein content and lysine content of M1 increased by 10% and 8%, while crude fat content reduced by 32%, respectively. In conclusion, AMF could improve maize yield, increase crude protein content, and lysine content in maize grain, thus improving maize grain quality.

Key words: arbuscular mycorrhizal fungi, nitrogen fertilizer forms, maize yield, grain quality

图1

氮肥形态和丛枝菌根真菌对玉米籽粒产量及其氮素积累量的影响 M0、M1分别代表对照、菌丝室只有AMF菌丝2个处理; NH4+-N、NO3--N分别代表铵态氮肥和硝态氮肥处理。同一年度中, 柱上不同小写字母表示处理间0.05水平差异显著性。"

表1

氮肥形态和丛枝菌根真菌对灌浆期玉米籽粒、叶、茎、根生物量及其氮素积累量的影响"

项目
Item
年份
Year
M0NH4+-N M1NH4+-N M0NO3--N M1NO3--N 氮肥形态
Nitrogen (N)
丛枝菌根真菌
Mycorrhizae (M)
氮肥形态互作丛枝菌根真菌
N × M
生物量Biomass (g plant-1)
籽粒
Grain
2018 30.01±3.06 c 68.95±2.95 a 43.04±2.65 b 60.78±3.78 a 0.59 81.77*** 11.38**
2019 44.11±6.41 c 68.33±4.21 ab 59.47±6.78 bc 78.17±2.73 a 5.66* 16.42** 0.27

Leaf
2018 49.02±1.71 a 49.93±5.73 a 46.54±0.55 a 53.83±4.65 a 0.04 1.17 0.71
2019 35.16±1.51 ab 40.99±1.02 a 29.19±3.01 b 42.79±2.93 a 0.83 18.13** 2.88

Stem
2018 66.83±1.09 a 72.11±1.91 a 69.45±3.62 a 72.59±1.39 a 0.52 3.48 0.21
2019 41.82±5.95 c 58.13±3.94 b 55.34±3.97 bc 76.48±3.93 a 12.37** 17.08** 0.28

Root
2018 28.22±3.09 b 45.11±1.77 a 35.05±1.93 b 48.25±1.74 a 5.14 46.54*** 0.72
2019 17.74±0.43 b 20.19±0.27 a 18.48±0.43 b 20.76±0.45 a 2.72 34.94*** 0.05
氮素积累量N accumulation (mg plant-1)
籽粒
Grain
2018 124.11±10.57 b 367.26±18.07 a 175.41±29.1 b 332.88±37.65 a 0.11 59.44*** 2.72
2019 179.77±10.05 b 363.29±17.47 a 242.55±49.44 b 424.01±15.01 a 4.96 43.31*** 0.01

Leaf
2018 75.07±32.46 ab 106.55±19.77 a 26.61±1.44 b 129.41±18.51 a 0.37 10.08* 2.84
2019 49.15±0.61 c 115.84±11.55 b 158.68±10.49 ab 188.82±31.62 a 26.78*** 7.54* 1.08

Stem
2018 66.12±14.83 b 206.05±46.13 a 58.56±23.62 b 252.37±12.49 a 0.49 36.41*** 0.94
2019 41.32±14.54 b 126.87±19.43 a 35.62±8.94 b 110.33±33.06 a 0.28 14.59** 0.07

Root
2018 60.34±11.96 a 63.71±2.46 a 27.81±1.46 b 71.01±3.04 a 3.96 13.55** 9.89*
2019 30.31±13.03 ab 38.66±8.56 ab 11.09±0.49 b 47.57±5.67 a 0.39 7.32* 2.87

图2

玉米灌浆期丛枝菌根真菌对不同处理(M0NH4+-N; M1NH4+-N; M0NO3--N; M1NO3--N)根系的侵染 M0NH4+-N代表铵态氮肥对照处理; M1NH4+-N代表铵态氮肥菌丝室只有AMF菌丝处理; M0NO3--N代表硝态氮肥对照处理; M1NO3--N代表硝态氮肥菌丝室只有AMF菌丝处理。"

图3

氮肥形态和丛枝菌根真菌对灌浆期玉米根系侵染率的影响 M0、M1分别代表对照、菌丝室只有AMF菌丝2个处理; NH4+-N、NO3--N分别代表铵态氮肥和硝态氮肥处理; S1、S2、S3分别代表吐丝后15 d, 吐丝后25 d和吐丝后35 d。同一年度中, 柱上不同字母表示处理间P < 0.05水平差异显著性。"

图4

氮肥形态和丛枝菌根真菌对灌浆期玉米穗位叶叶绿素含量、叶面积的影响 处理同图3。SPAD值表示叶绿素含量。同一年度中, 柱上不同小写字母表示处理间0.05水平差异显著性。"

表2

氮肥形态和丛枝菌根真菌对灌浆期玉米光合参数的影响"

处理
Treatment
净光合速率
Net photosynthetic rate
(μmol m-2 s-1)
气孔导度
Stomatal conductance
(mmol m-2 s-1)
胞间二氧化碳浓度
Intercellular CO2 concentration
(μmol mol-1)
蒸腾速率
Transpiration rate
(mmol m-2 s-1)
2018 2019 2018 2019 2018 2019 2018 2019
M0NH4+-N 12.47±0.26 b 12.83±0.67 c 0.11±0.01 b 0.11±0.01 c 2.92±3.12 a 7.71±7.36 a 3.35±0.06 b 4.37±0.71 a
M1NH4+-N 17.32±0.56 a 17.56±0.23 b 0.16±0.02 ab 0.12±0.01 bc 15.63±13.98 a 9.48±11.24 a 4.65±0.29 a 5.14±0.51 a
M0NO3--N 17.57±1.05 a 14.65±0.86 c 0.16±0.02 ab 0.16±0.01 b 9.39±10.51 a 38.47±29.37 a 5.03±0.39 a 4.61±0.52 a
M1NO3--N 18.84±0.86 a 21.02±0.73 a 0.19±0.02 a 0.26±0.02 a 25.93±11.59 a 67.62±12.74 a 5.56±0.43 a 6.15±0.34 a
氮肥形态
Nitrogen form (N)
19.76** 16.21** 6.41* 54.72*** 0.63 6.56* 15.72** 1.44
丛枝菌根真菌Mycorrhizae (M) 16.89** 71.63*** 6.61* 20.77** 1.93 0.79 7.88* 4.78
氮肥形态互作丛枝菌根真菌(N × M) 5.77* 1.55 0.63 10.63* 0.03 0.62 1.37 0.53

图5

氮肥形态和丛枝菌根真菌对玉米穗位叶(A, C, E, G)和籽粒(B, D, F, H)氮代谢相关酶活性的影响 处理同图3。同一年度中, 柱上不同字母表示处理间P < 0.05水平差异显著性。"

图6

氮肥形态和丛枝菌根真菌对玉米总根长(A和B)、根表面积(C和D)、根直径(E和F)、根体积(G和H)的影响 处理同图1。同一年度中, 柱上不同字母表示处理间P< 0.05水平差异显著性。"

表3

氮肥形态和丛枝菌根真菌对玉米穗部性状的影响"

处理
Treatment
穗行数
Rows number per ear
行粒数
Kernels number per row
穗粗
Ear diameter (cm)
百粒重
100-grain weight (g)
穗位叶干重
Ear leaf biomass (g plant-1)
2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
M0NH4+-N 12.67±0.67 b 14.01±0.11 a 26.12±2.31 c 26.67±2.4 c 14.01±0.51 c 15.78±0.62 b 11.76±0.37 bc 10.98±0.19 c 8.95±0.11 b 8.98±0.23 b
M1NH4+-N 13.33±0.67 b 14.67±0.67 a 35.22±2.08 ab 37.33±1.2 a 18.57±0.87 ab 21.68±3.16 a 12.52±0.23 ab 11.27±0.18 c 10.76±0.48 a 11.73±0.55 a
M0NO3--N 13.33±0.67 b 14.01±0.11 a 32.41±1.73 bc 31.13±1 bc 15.31±0.37 bc 14.45±0.76 b 11.44±0.11 c 12.12±0.08 b 7.01±0.29 c 6.74±0.14 c
M1NO3--N 16.21±0.13 a 14.67±0.67 a 40.33±3.18 a 33.33±2.33 ab 19.54±2.01 a 18.27±0.19 ab 12.98±0.45 a 13.45±0.39 a 10.7±0.73 a 11.19±0.48 a
氮肥形态Nitrogen form (N) 8.33* 0.01 5.64* 0.01 1.04 2.03 0.05 47.58*** 4.64 12.91**
丛枝菌根真菌
Mycorrhizae (M)
8.33* 2.12 13.19** 12.37** 14.92** 8.58* 13.12** 11.47** 35.07*** 86.34***
氮肥形态互作丛枝菌根真菌(N × M) 3.31 0.01 0.02 5.08 0.02 0.39 1.52 4.75 4.14 4.84

表4

氮肥形态和丛枝菌根真菌对玉米籽粒品质的影响"

处理
Treatment
粗蛋白含量
Crude protein content (%)
粗脂肪含量
Crude fat content (%)
粗淀粉含量
Crude starch content (%)
赖氨酸含量
Lysine content (%)
2018 2019 2018 2019 2018 2019 2018 2019
M0NH4+-N 9.41±0.22 c 9.31±0.13 c 6.07±0.08 a 4.85±0.03 b 60.79±0.29 b 65.07±0.31 b 0.62±0.01 b 0.61±0.01 c
M1NH4+-N 10.74±0.14 a 9.73±0.06 b 4.81±0.13 b 4.07±0.03 d 66.27±0.52 a 67.22±0.59 a 0.71±0.01 a 0.61±0.01 c
M0NO3--N 8.95±0.04 d 9.82±0.03 b 6.34±0.14 a 6.46±0.05 a 66.81±0.32 a 62.34±0.46 c 0.55±0.01 c 0.63±0.01 b
M1NO3--N 10.06±0.04 b 10.61±0.13 a 4.11±0.09 c 4.53±0.04 c 65.61±0.31 a 65.27±0.57 b 0.62±0.01 b 0.66±0.01 a
氮肥形态Nitrogen (N) 21.11** 66.48*** 4.65 796.79*** 53.29*** 22.63** 83.17*** 50.16***
丛枝菌根真菌Mycorrhizae (M) 96.87*** 49.69*** 289.34*** 1377.66*** 34.09*** 26.46*** 71.72*** 7.97*
氮肥形态互作丛枝菌根真菌(N × M) 0.88 4.78 22.15** 230.46*** 82.92*** 0.62 0.23 2.73
[1] 张学林, 徐钧, 安婷婷, 侯小畔, 李潮海. 不同氮肥水平下玉米根际土壤特性与产量的关系. 中国农业科学, 2016, 49: 2687-2699.
Zhang X L, Xu J, An T T, Hou X P, Li C H. Relationship between rhizosphere soil properties and yield of maize at different nitrogen levels. Sci Agric Sin, 2016, 49: 2687-2699. (in Chinese with English abstract)
[2] 代新俊, 杨珍平, 陆梅, 李慧, 樊攀, 宋佳敏, 高志强. 不同形态氮肥及其用量对强筋小麦氮素转运、产量和品质的影响. 植物营养与肥料学报, 2019, 25: 710-720.
Dai X J, Yang Z P, Lu M, Li H, Fan P, Song J M, Gao Z Q. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat. J Plant Nutr Fert, 2019, 25: 710-720. (in Chinese with English abstract)
[3] Bloom A J, Frensch J, Taylor A R. Influence of inorganic nitrogen and pH on the elongation of maize seminal roots. Ann Bot, 2006, 97: 867-873.
doi: 10.1093/aob/mcj605
[4] 姜佰文, 高强, 王春宏, 张迪, 高飞, 邓宏志, 徐赫男. 氮素形态调控对春玉米生长发育、产量和品质的影响. 东北农业大学学报, 2018, 49(11): 35-41.
Jiang B W, Gao Q, Wang C H, Zhang D, Gao F, Deng H Z, Xu H N. Effect of nitrogen form regulations on growth and development, yield and quality of spring maize. J Northeast Agric Univ, 2018, 49(11): 35-41. (in Chinese with English abstract)
[5] 李学俊, 文建雷, 韩书成, 曹翠玲, 李生秀. 氮素形态对玉米幼苗生物机制及生物量的影响. 西北农林科技大学学报(自然科学版), 2008, 36(3): 192-196.
Li X J, Wen J L, Han S C, Cao C L, Li S X. Effect of N form on physiological mechanism and biomass in corn seedlings. J Northwest A&F Univ (Nat Sci Edn), 2008, 36(3): 192-196. (in Chinese with English abstract)
[6] 尹彩霞, 左竹, 李桂花. 不同形态氮肥对玉米产量和土壤浸提性有机质的影响. 中国土壤与肥料, 2011, (3): 27-30.
Yin C X, Zuo Z, Li G H. Effect of nitrogen forms on maize yield and soil extractable organic matter. China Soil Fert, 2011, (3): 27-30. (in Chinese with English abstract)
[7] Veresoglou S D, Chen B D, Rillig M C. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem, 2012, 46: 53-62.
doi: 10.1016/j.soilbio.2011.11.018
[8] 张学林, 吴梅, 李晓立, 何堂庆, 张晨曦, 田明慧, 陈冰洁, 张富粮, 郝晓峰, 杨青华. 丛枝菌根真菌对灌浆前期玉米子粒氮代谢及产量和品质的影响. 河南农业大学学报, 2021, 55: 647-653.
Zhang X L, Wu M, Li X L, He T Q, Zhang C X, Tian M H, Chen B J, Zhang F L, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on nitrogen metabolism, yield and quality of grain in early grain filling stage in maize. J Henan Agric Univ, 2021, 55: 647-653. (in Chinese with English abstract)
[9] Hodge A, Storer K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil, 2015, 386: 1-19.
doi: 10.1007/s11104-014-2162-1
[10] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响. 作物学报, 2021, 47: 1603-1615.
doi: 10.3724/SP.J.1006.2021.03050
Zhang X L, Li X L, He T Q, Zhang C X, Tian M H, Wu M, Zhou Y N, Hao X F, Yang Q H. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize. Acta Agron Sin, 2021, 47: 1603-1615. (in Chinese with English abstract)
[11] 金海如, 蒋湘艳, 夏婷婷. 不同有机物料及其菌根化对甜玉米产量与品质的协同影响. 中国土壤与肥料, 2019, (6): 196-203.
Jin H R, Jiang X Y, Xia T T. Synergistic effect of different organic matters and mycorrhizal fungi on biomass and quality of sweet maize. China Soil Fert, 2019, (6): 196-203. (in Chinese with English abstract)
[12] Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ, 2005, 28: 1247-1254.
doi: 10.1111/j.1365-3040.2005.01360.x
[13] Pan S, Wang Y, Qiu Y P, Chen D M, Zhang L, Ye C L, Guo H, Zhu W X, Chen A Q, Xu G H, Zhang Y, Bai Y F, Hu S J. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Global Change Biol, 2020, 26: 6568-6580.
doi: 10.1111/gcb.15311
[14] Hodge A. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol, 2001, 151: 725-734.
doi: 10.1046/j.0028-646x.2001.00200.x pmid: 33853263
[15] Xie K, Ren Y H, Chen A Q, Yang C F, Zheng Q S, Chen J, Wang D S, Li Y T, Hu S J, Xu G H. Plant nitrogen nutrition: the roles of arbuscular mycorrhizal fungi. J Plant Physiol, 2022, 269: 153591.
doi: 10.1016/j.jplph.2021.153591
[16] Seck-Mbengue M F, Mueller A, Ngwene B, Neumann E, George E. Transport of nitrogen and zinc to Rhodes grass by arbuscular mycorrhiza and roots as affected by different nitrogen sources (NH4+-N and NO3--N). Symbiosis, 2017, 73: 191-200.
doi: 10.1007/s13199-017-0480-9
[17] Wang S S, Chen A Q, Xie K, Yang X F, Luo Z Z, Chen J D, Zeng D C, Ren Y H, Yang C F, Wang L X, Feng H M, Lopez-Arredondo D L, Herrera-Estrella L R, Xu G H. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc Natl Acad Sci USA, 2020, 117: 16649-16659.
doi: 10.1073/pnas.2000926117
[18] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50: 2061-2070.
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Sci Agric Sin, 2017, 50: 2061-2070. (in Chinese with English abstract)
[19] 陈传永, 王荣焕, 赵久然, 徐田军, 王元东, 刘秀, 刘春阁, 裴志超, 成广雷, 陈国平. 不同生育时期遮光对玉米籽粒灌浆特性及产量的影响. 作物学报, 2014, 40: 1650-1657.
Chen C Y, Wang R H, Zhao J R, Xu T J, Wang Y D, Liu X Z, Liu C G, Pei Z C, Cheng G L, Chen G P. Effects of shading on grain-filling properties and yield of maize at different growth stages. Acta Agron Sin, 2014, 40: 1650-1657. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01650
[20] 刘笑鸣, 顾万荣, 李从锋, 张立国, 王明泉, 龚士琛, 陈喜昌, 李彩凤, 魏湜, 李文华. 化学调控和氮肥对高密度下春玉米光热水利用效率和产量的影响. 中国农业科学, 2020, 53: 3083-3094.
Liu X M, Gu W R, Li C F, Zhang L G, Wang M Q, Gong S C, Chen X C, Li C F, Wei S, Li W H. Effects of chemical regulation and nitrogen fertilizer on radiation, heat and water utilization efficiency and yield of spring maize under dense planting condition. Sci Agric Sin, 2020, 53: 3083-3094. (in Chinese with English abstract)
[21] 邓胤, 申鸿, 罗文倩, 郭涛. 不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响. 植物营养与肥料学报, 2009, 15: 1380-1385.
Deng Y, Shen H, Luo W Q, Guo T. Effects of AMF on key enzymes of nitrogen assimilation in maize under different ammonium to nitrate ratios. Plant Nutr Fert Sci, 2009, 15: 1380-1385. (in Chinese with English abstract)
[22] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Brit Mycol Soc Trans, 1970, 55: 158-161.
doi: 10.1016/S0007-1536(70)80110-3
[23] Zheng B C, Zhang X N, Chen P, Du Q, Zhou Y, Yang H, Wang X C, Yang F, Yong T W, Yang W Y. Improving maize’s N uptake and N use efficiency by strengthening roots’ absorption capacity when intercropped with legumes. PeerJ, 2021, 9: e11658.
doi: 10.7717/peerj.11658
[24] Ushio M, Fujiki Y, Hidaka A, Kitayama K. Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests. Funct Ecol, 2015, 29: 1235-1245.
doi: 10.1111/1365-2435.12424
[25] Kohl L, van der Heijden M G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol Biochem, 2016, 94: 191-199.
doi: 10.1016/j.soilbio.2015.11.019
[26] Jabborova D, Annapurna K, Paul S, Kumar S, Saad H A, Desouky S, Ibrahim M F M, Elkelish A. Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. J Fungi, 2021, 7: 571.
doi: 10.3390/jof7070571
[27] Chen M L, Yang G, Sheng Y, Li P Y, Qiu H Y, Zhou X T, Huang L Q, Chao Z. Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquor ice under nutrient stress. Front Plant Sci, 2017, 8: 931.
doi: 10.3389/fpls.2017.00931
[28] Yang H S, Koide R T, Zhang Q. Short-term waterlogging increases arbuscular mycorrhizal fungal species richness and shifts community composition. Plant Soil, 2016, 404: 373-384.
doi: 10.1007/s11104-016-2850-0
[29] Uribelarrea M, Below F E. Stress control achieving high yields: the quest for 300 bushel per acre corn. In: Fazio G, eds. Proceedings of the 36th Annual Meeting of the Plant Growth Regulation Society of America. USA: Plant Growth Regulation Society of America, 2010. pp 45-52.
[30] Boussadia O, Steppe K, Zgallai H, El Hadj S B, Braham M, Lemeur R, Van Labeke M C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci Hortic, 2010, 123: 336-342.
doi: 10.1016/j.scienta.2009.09.023
[31] Mathur S, Sharma M P, Jajoo A. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem Photobiol B: Bilology, 2018, 180: 149-154.
[32] Zhou Q, Ravnskov S, Jiang D, Wollenweber B. Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit. Plant Growth Regul, 2015, 75: 751-760.
doi: 10.1007/s10725-014-9977-x
[33] 任佰朝, 张吉旺, 董树亭, 赵斌, 刘鹏. 生育前期淹水对夏玉米冠层结构和光合特性的影响. 中国农业科学, 2017, 50: 2093-2103.
Ren B C, Zhang J W, Dong S T, Zhao B, Liu P. Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize. Sci Agric Sin, 2017, 50: 2093-2103. (in Chinese with English abstract)
[34] Ghosh P K, Bandyopadhyay A K K, Manna M C, Mandal K G, Misra A K, Hati K M. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics: II. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Bioresour Technol, 2004, 95: 85-93.
doi: 10.1016/j.biortech.2004.02.012
[35] Toljander J F, Santos-Gonzalez J C, Tehler A, Finlay R D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. Fems Microbiol Ecol, 2008, 65: 323-338.
doi: 10.1111/j.1574-6941.2008.00512.x pmid: 18547325
[36] 李锦辉. 高蛋白玉米的品质形成机理及关键技术研究. 河南农业大学博士学位论文, 河南郑州, 2007.
Li J H. Mechanism of Quality Formation and Key Cultural Technique of High-Protein Maize Cultivars. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2007. (in Chinese with English abstract)
[37] 李浩川. 不同生态条件下玉米籽粒蛋白和赖氨酸含量及主要农艺性状的遗传研究. 河南农业大学硕士学位论文, 河南郑州, 2007.
Li H C. Study on the Heredity of Kernel Protein and Lysine Content and Main Agronomic Characters in Maize in Different Ecological Conditions. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2007 (in Chinese with English abstract).
[38] 周卫霞, 董朋飞, 王秀萍, 李潮海. 弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响. 作物学报, 2013, 39: 1826-1834.
doi: 10.3724/SP.J.1006.2013.01826
Zhou W X, Dong P F, Wang X P, Li C H. Effects of low-light stress on kernel setting and metabolism of carbon and nitrogen in different maize (Zea mays L.) genotypes. Acta Agron Sin, 2013, 39: 1826-1834. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01826
[39] 吴雅薇, 李强, 豆攀, 马晓君, 余东海, 罗延宏, 孔凡磊, 袁继超. 氮肥对不同耐低氮性玉米品种生育后期叶绿素含量和氮代谢酶活性的影响. 草业学报, 2017, 26(10): 188-197.
Wu Y W, Li Q, Dou P, Ma X J, Yu D H, Luo Y H, Kong F L, Yuan J C. Effects of nitrogen fertilizer on leaf chlorophyll content and enzyme activity at late growth stages in maize cultivars with contrasting tolerance to low nitrogen. Acta Pratac Sin, 2017, 26(10): 188-197. (in Chinese with English abstract)
[40] 吕鹏, 张吉旺, 刘伟, 杨今胜, 董树亭, 刘鹏, 李登海. 施氮时期对高产夏玉米氮代谢关键酶活性及抗氧化特性的影响. 应用生态学报, 2012, 23: 1591-1598.
Lyu P, Zhang J W, Liu W, Yang J S, Dong S T, Liu P, Li D H. Effects of nitrogen application period on the nitrogen metabolism key enzymes activities and antioxidant characteristics of high-yielding summer maize. Chin J Appl Ecol, 2012, 23: 1591-1598 (in Chinese with English abstract)
[41] 邢瑶, 马兴华. 氮素形态对植物生长影响的研究进展. 中国农业科技导报, 2015, 17: 109-117.
Xing Y, Ma X H. Research progress on effect of nitrogen form on plant growth. J Agric Sci Technol, 2015, 17: 109-117. (in Chinese with English abstract)
[1] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[2] 张富粮, 陈冰洁, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 丛枝菌根真菌对玉米籽粒氮素吸收和土壤细菌群落组成的影响[J]. 作物学报, 2022, 48(12): 3215-3224.
[3] 田明慧, 杨硕, 杜嘉琪, 张晨曦, 何堂庆, 张学林. 不同氮肥水平下丛枝菌根真菌对玉米籽粒灌浆期磷和钾吸收的影响[J]. 作物学报, 2022, 48(12): 3166-3178.
[4] 丁永刚, 陈立, 董金鑫, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 高产高效型半冬性小麦品种的产量构成、氮素积累转运和籽粒品质特征分析[J]. 作物学报, 2022, 48(12): 3144-3154.
[5] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615.
[6] 王艳丽,吴鹏年,李培富,王西娜,朱旭. 有机肥配施氮肥对滴灌春玉米产量及土壤肥力状况的影响[J]. 作物学报, 2019, 45(8): 1230-1237.
[7] 罗来超,王朝辉,惠晓丽,张翔,马清霞,包明,赵岳,黄明,王森. 覆膜栽培对旱地小麦籽粒产量及硫含量的影响[J]. 作物学报, 2018, 44(6): 886-896.
[8] 王劲松,焦晓燕,丁玉川,董二伟,白文斌,王立革,武爱莲. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应[J]. 作物学报, 2015, 41(08): 1269-1278.
[9] 左青松,黄海东,曹石,杨士芬,廖庆喜,冷锁虎,吴江生,周广生. 不同收获时期对油菜机械收获损失率及籽粒品质的影响[J]. 作物学报, 2014, 40(04): 650-656.
[10] 田云录, 陈金, 邓艾兴, 郑建初, 张卫建. 非对称性增温对冬小麦籽粒淀粉和蛋白质含量及其组分的影响[J]. 作物学报, 2011, 37(02): 302-308.
[11] 王东;于振文. 施氮量对强筋小麦品种济麦20氮硫积累与再分配及籽粒品质的影响[J]. 作物学报, 2007, 33(09): 1439-1445.
[12] 蔡瑞国;尹燕枰;张敏;戴忠民;严美玲;付国占;贺明荣;王振林. 氮素水平对藁城8901和山农1391籽粒品质的调控效应[J]. 作物学报, 2007, 33(02): 304-310.
[13] 王晓英;贺明荣. 水氮耦合对济麦20籽粒蛋白质组分及品质的影响[J]. 作物学报, 2007, 33(01): 126-131.
[14] 尹静;胡尚连;肖佳雷;李文雄. 不同形态氮肥对春小麦品种籽粒淀粉及其组分的调节效应[J]. 作物学报, 2006, 32(09): 1294-1300.
[15] 贺明荣;杨雯玉;王晓英;王振林;杨万立. 不同氮肥运筹模式对冬小麦籽粒产量品质和氮肥利用率的影响[J]. 作物学报, 2005, 31(08): 1047-1051.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[7] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[8] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[9] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[10] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .