欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 597-607.doi: 10.3724/SP.J.1006.2023.22014

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

包穗突变体sui1-5鉴定及OsPSS1互作蛋白筛选

杨晔1(), 孙琦2, 邢欣欣2, 张海涛1,*(), 赵志超2,*(), 程治军2   

  1. 1安徽农业大学农学院, 安徽合肥 230036
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2022-03-05 接受日期:2022-07-21 出版日期:2023-03-12 网络出版日期:2022-08-19
  • 通讯作者: 张海涛,赵志超
  • 作者简介:E-mail: 874498704@qq.com
  • 基金资助:
    国家自然科学基金项目(31871603)

Identification of sheathed panicle mutant sui1-5 and screening of OsPSS1 interaction protein in rice (Oryza sativa L.)

YANG Ye1(), SUN Qi2, XING Xin-Xin2, ZHANG Hai-Tao1,*(), ZHAO Zhi-Chao2,*(), CHENG Zhi-Jun2   

  1. 1College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-03-05 Accepted:2022-07-21 Published:2023-03-12 Published online:2022-08-19
  • Contact: ZHANG Hai-Tao,ZHAO Zhi-Chao
  • Supported by:
    National Natural Science Foundation of China(31871603)

摘要:

包穗是水稻生产上的不利性状, 表现为倒一节间伸长异常, 穗部不能正常从叶鞘伸出。目前, 已经鉴定报道了多个包穗性状突变体, 但对该性状产生的分子机制认识仍然有限。OsPSS1/SUI1是一个磷脂酰丝氨酸合酶的编码基因, 该基因突变会引起突变体sui1-4的倒一节间严重缩短。我们鉴定到了一个新的OsPSS1/SUI1等位突变体sui1-5, 该突变体倒一节间缩短程度明显减轻。测序发现突变体中基因SUI1的第7个外显子存在1个单碱基G→T替换, 导致甘氨酸突变为缬氨酸。为了研究OsPSS1的功能, 我们通过酵母筛库发现了一个与OsPSS1互作的蛋白GH9A3, 并通过酵母双杂交、荧光素酶互补(LCI)和双分子荧光互补(BIFC)实验加以验证。GH9A3GH9基因家族成员, 编码内切-1,4-β葡聚糖酶, 推测是细胞壁成分纤维素合成的一个关键酶。在苗期, SUI1和互作蛋白编码基因GH9A3的表达量并不同步, GH9A3sui1-5的表达量上调。但是在拔节抽穗期, SUI1GH9A3sui1-5中的表达量都相应降低, 其他纤维素合酶CESAs家族基因的表达量在sui1-5中也明显降低。这些结果为进一步研究OsPSS1的功能奠定了一定的理论基础。

关键词: 包穗, SUI1, GH9A3, 精细定位, 纤维素合酶

Abstract:

The sheathed panicle phenomenon is a disadvantageous trait in agricultural production, which is mainly due to the abnormal elongation of the uppermost internode, resulting in the panicle closed by flag leaf sheath. Although some mutants of sheathed panicle have been identified and reported in rice, the underling molecular mechanism of uppermost internode shortening is still poorly understood. OsPSS1/SUI1 is a phosphatidylserine synthase gene and the mutation of OsPSS1 leads to a severe shortening of the uppermost internode of mutant sui1-4. We discovered and identified a new allelic mutant sui1-5 of SUI1 and the degree of the uppermost internode shortening in sui1-5 was significantly reduced. Sequence analysis revealed a single nucleotide substitution of G to T at the seventh exon of SUI1 in sui1-5, resulting in an amino acid change from glycine to valine. To study the function of OsPSS1, we detected a protein GH9A3 interacting with SUI1 through a yeast screening library, which was verified by yeast two-hybrid, luciferase complementarity (LCI), and bimolecular fluorescence complementarity (BiFC). GH9A3 was a member of GH9 gene family, encoding an endo-β-1,4-glucanase which was speculated to be a key enzyme in cell wall cellulose synthesis. At seedling stage, the relative expression level of SUI1 was not synchronized with that of interaction protein-coding gene GH9A3, and the relative expression level of GH9A3 was up-regulated in sui1-5. But at heading and jointing stage, the relative expression level of SUI1 and GH9A3 decreased synchronously, and the relative expression level of other cellulose synthase CESAs family genes decreased obviously in sui1-5. These results lay a foundation for further study of the function of OsPSS1.

Key words: sheathed panicle, SUI1, GH9A3, fine mapping, cellulose synthesis

表1

用于基因精细定位的Indel和SNP引物"

多态性分子标记
Polymorphic marker
正向引物
Forward sequence (5'-3')
反应引物
Reverse sequence (5'-3')
Inc1-1 AGGGGAAGAAAAACCTGACC CCGCGTGCAGATAAAGTACA
Y1-1 CAAGCAGTGATCATACAGCCTTCC GCCATGGCTGAGAACAGAGAGC
Y1-2 CTCCTGTTACAACTGCATGGA TCGATCCATTAGCTAGCCGG
Y1-3 CATGAGTACAACATCGCCTACA CGATGATTCAGTACATGCATGC
Y1-4 GCTGCATCGGTATACAAGACG TCAGTTTGTCAGGGAGGGAG
Y1-5 CTCCGTTCTCCACCGTGT AACAGCCAACTAGGTTCACA
Y1-6 GCGGCCACCATGATCTTGTACC GTACTTGTTGTAGCGCCCGTTCC
Y1-7 CTAGCAGCTGTCTGCGACACACG CCGAGGTGTTATGCCAATCTCTATGG

表2

用于qRT-PCR引物"

基因名称
Gene name
正向引物
Forward sequence (5'-3')
反应引物
Reverse sequence (5'-3')
OsCesA1 TCTTCTCGCCACGAACAACA CTTGGAGGGGTCCACAATCC
OsCesA3 TGCCAGCCATCTGTTTGCTA GCCAACACCACTCCATCTCA
OsCesA4 AAGGGATCAGCGCCAATCAA GGAGCCATTTCAGACGACCA
OsCesA7 TGGAAGTCGGTGTACTGCAC GCGGCTCATGAAGATCTCGA
OsCesA8 ATGACCAACGGGACAAGCAT TAGAGAGAGGCTGGCGAGTT
OsCesA9 GCGCCGATCAACCTATCTGA CTTGTAGCCGTAGAGGAGCG
OsGH9A3 TGAGTGCCACTCTTGCTCAG CCGAACTTGTACAGGGCCTT
SUI1 GCAGACCCGTGATGATGCTA TATATGCGGCAGTCGGTTCC
Ubiquitin ACCACTTCGACCGCCACTACT ACGCCTAAGCCTGCTGGTT

图1

野生型和突变体表型对比 A: 野生型Kitaake (左)与突变体sui1-4 (右)抽穗期表型对比; B: 野生型Kitaake (左)与突变体sui1-5 (右)抽穗期表型对比; C: 野生型(左)和突变体(右)穗部表型以及各节间长度对比; D: 野生型与突变体各节间长度对株高的贡献率; E, F: 野生型(E)和突变体(F)倒二节间纵切面细胞学比较; G, H: 野生型和突变体纵切薄壁细胞长度和宽度; I, J: 野生型(I)和突变体(J)倒二节间横切面细胞学比较; K: 野生型和突变体倒二节间横截面半径细胞数目。标尺: (A) 10 cm, (B) 10 cm, (C) 10 cm, (E, F) 100 μm, (I, J) 100 μm。*表示在P < 0.05水平差异显著。"

表3

野生型和突变体农艺性状比较"

农艺性状
Agronomic trait
野生型
Kitaake
突变体
sui1-5
株高Plant height (cm) 78.90±4.80 68.80±5.40**
分蘖数Tiller number 23.40±2.37 31.50±3.30**
剑叶宽Flag leaf length (cm) 1.21±0.09 1.08±0.08**
一次枝梗Primary branch number 6.80±0.92 8.30±1.50*
二次枝梗Secondary branch number 7.50±1.96 1.70±1.25**
穗长 panicle length (cm) 14.09±0.96 9.27±1.01**
倒一节间长First internode length (cm) 26.64±3.47 0.21±0.12**
倒二节间长Second internode length (cm) 17.51±0.98 14.18±0.88**
倒三节间长Third internode length (cm) 9.35±1.19 8.63±1.58
倒四节间长Fourth internode length (cm) 2.53±0.37 1.79±0.51**
每穗粒数Grain number per panicle 67.10±8.78 29.80±4.64**
结实率Seed setting rate (%) 96.00±0.03 62.00±0.06**
千粒重1000-grain weight (g) 26.13±0.04 26.89±0.06**
粒长Seed length (mm) 6.79±0.15 6.87±0.19
粒宽Seed weight (mm) 3.33±0.04 3.39±0.13
粒厚Seed thickness (mm) 2.20±0.05 2.34±0.32

图2

SUI1基因的图位克隆 A: SUI1初步定位在1号染色体标记Y1-1与Y1-7之间; B: SUI1精细定位在标记Y1-3和Y1-4之间38.05 kb范围内; 横线上方为基因定位所用分子标记, 横线下方为交换单株数。C: SUI1精细定位区间内包含3个候选基因; D: SUI1基因包含12个外显子和11个内含子, 白方块表示编码区, 黑方块表示非编码区, 线条表示内含子下图为Kitaake和sui1-5在第7个外显子上的序列对比, 箭头指向突变的碱基。"

图3

SUI1与GH9A3蛋白互作验证 A: 酵母双杂交验证SUI1和GH9A3的互作。AD: 转录激活域; BD: DNA结合结构域; SD: 营养缺陷型培养基。B: 荧光素酶互补成像(LCI)验证SUI1与GH9A3在本氏烟草中的互作。C: BiFC在本氏烟草中验证SUI1与GH9A3的互作, mCherry: SCAMP1。至少重复3个独立烟草叶片。"

图4

水稻GH9A3蛋白进化树分析 水稻OsGH9A3蛋白序列作为Qurry序列, 普通小麦、玉米和拟南芥作为候选物种, 以BLAST得到的同源蛋白在MEGA7.0中采用邻接法构建进化树。引导程序值以节点上的百分比显示。分支长度与用于推断系统发育树的进化距离。结果表明OsGH9A3与玉米gpm617蛋白同源性最接近, 水稻和拟南芥GH9A家族蛋白之间同源性也比较高。"

图5

GH9A3烟草表皮亚细胞定位 上图为35S-GFP空载体对照; 下图为连接GH9A3片段的35S-GFP载体, mCherry: AtSYP122, GH9A3定位在烟草表皮细胞的质膜上, 伴随点状结构。"

图6

SUI1与GH9A3表达量在抽穗期的突变体中显著降低 A: 幼苗期野生型和突变体sui1-5表型, 左: 野生型, 右: 突变体sui1-5; B: 基因SUI1和GH9A3在苗期(左)和抽穗期(右)表达量的变化情况。在突变体中2个基因在抽穗期的表达量均大幅下降。**表示在P < 0.01水平差异显著。"

图7

CESAs纤维素合酶家族基因表达量分析 CESAs的表达量在突变体sui1-5抽穗期的茎中显著下调。OsCesA1、OsCESA3和OsCESA8参与初级细胞壁合成; OsCesA4、OsCESA7和OsCESA9参与次级细胞壁合成。**表示在P < 0.01水平差异显著。"

[1] 何祖华, 申宗坦. 水稻穗伸出度的遗传和不育系改良. 中国水稻科学, 1991, 5: 1-6.
He Z H, Shen Z T. Inheritance of panicle exertion and improvement of male sterile line in rice. Chin J Rice Sci, 1991, 5: 1-6. (in Chinese with English abstract)
[2] 申宗坦, 杨长登, 何祖华. 消除籼型野败不育系包颈现象的研究. 中国水稻科学, 1987, 1: 95-99.
Shen Z T, Yang C D, He Z H. Studies on eliminating panicle enclosure in wa-type ms line of rice (Oryza sativa subsp. indica). Chin J Rice Sci, 1987, 1: 95-99 (in Chinese with English abstract).
[3] 王亚坤. 微调EUI1对水稻不育系解除包颈的机理及应用研究. 中国农业科学院硕士学位论文, 北京, 2021.
Wang Y K. Mechanism and Application of Fine-tuning EUI1 to Improve the Performance of Heading of Rice Male Sterile Lines. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[4] 谭震波, 沈利爽, 况浩池, 陆朝福, 陈英, 周开达, 朱立煌. 水稻上部节间长度等数量性状基因的定位及其遗传效应分析. 遗传学报, 1996, 23: 439-446.
Tan Z B, Shen L S, Kuang H C, Lu C F, Chen Y, Zhou K D, Zhu Y H. Identification of QTLs for lengths of the top internodes and other traits in rice and analysis of their genetic effects. Acta Genet Sin, 1996, 23: 439-446. (in Chinese with English abstract)
[5] Rutger J N. A fourth genetic element to facilitate hybrid cereal production—a recessive tall in rice. Crop Sci, 1981, 21: 373-376.
doi: 10.2135/cropsci1981.0011183X002100030005x
[6] 杨蜀岚, 杨仁崔, 曲雪萍, 章清杞, 黄荣华, 王斌. 水稻长穗颈高秆隐性基因eui2的遗传及其微卫星分析. 植物学报, 2001, 43: 67-71.
Yang S L, Yang R C, Qu X P, Zhang Q Q, Huang R H, Wang B. Genetic and microsatellite analyses of a new elongated and microsatellite analyses of a new elongated uppermost internode gene eui2 of rice. Acta Bot Sin, 2001, 43: 67-71. (in Chinese with English abstract)
[7] Heu M H, Shrestha G. Genetic Analysis of Sheathed Panicle in a Nepalese Rice Cultivar Gamadi. Rice Genetics Proceedings of the International Rice Genetics Symposium,27-31 May, 1985, Manila, Philippines. pp 317-322.
[8] Kinoshita T. Report of committee on gene symbolization, nomenclature, and linkage groups. Rice Genet Newsl, 1995, 12: 13-74.
[9] Maekawa M. Allelism test for the genes responsible for sheathed panicle. Rice Genet Newsl, 1986, 3: 62-63.
[10] Shrestha G L, Heu M H. Gene location for “Gamadiness” in rice (Oryza sativa L.). Korean J Crop Sci, 1984, 29: 128-135.
[11] Maekawa M, Inukai T. Genes linked with d-2 in rice. Jpn J Breed, 1992, 42: 212-213.
[12] 朱克明. 水稻包穗基因SHP6的遗传与定位. 扬州大学硕士学位论文, 江苏扬州, 2006.
Zhu K M. Genetic Analysis and Mapping of SHP6 Gene in Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2006. (in Chinese with English abstract)
[13] Zhu L, Hu J, Zhu K M, Fang Y X, Gao Z, He Y Z, Zhang G H, Guo L B, Zeng D L, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice. Plant Mol Biol, 2011, 77: 475-487.
doi: 10.1007/s11103-011-9825-6 pmid: 21928114
[14] 孙琦, 赵志超, 张瑾晖, 张锋, 程治军, 邹德堂. 水稻包穗突变体sui2的遗传分析和基因精细定位. 作物学报, 2020, 46: 1734-1742.
Sun Q, Zhao Z C, Zhang J H, Zhang F, Cheng Z J, Zou D T. Genetic analysis and fine mapping of a sheathed panicle mutant sui2 in rice (Oryza sativa L.). Acta Agron Sin, 2020, 46: 1734-1742. (in Chinese with English abstract)
[15] Zhang Y, Feng F, He C. Down regulation of OsPK1 contributes to oxidative stress and the variations in ABA/GA balance in rice. Plant Mol Biol Rep, 2012, 30: 1006-1013.
doi: 10.1007/s11105-011-0386-2
[16] 刘庄, 罗丽娟. 水稻矮秆鞘包穗突变体茎的形态解剖学研究. 中国农学通报, 2006, 22(12): 409-412.
Liu Z, Luo L J. Anatomical studies on the stem of rice of dwarf and sheathed panicle. Chin Agric Sci Bull, 2006, 22(12): 409-412. (in Chinese with English abstract)
[17] Guan H Z, Duan Y L, Liu H Q, Chen Z W, Zhuo M, Zhuang L J, Qi W M, Pan R S, Mao D M, Zhou Y C. Genetic analysis and fine mapping of an enclosed panicle mutant esp2 in rice (Oryza sativa L.). Chin Sci Bull, 2011, 56: 1476-1480.
doi: 10.1007/s11434-011-4552-9
[18] Ma J, Cheng Z J, Chen J, Shen J B, Zhang B C, Ren Y L, Ding Y, Zhou Y H, Zhang H, Zhou K N, Wang J L, Lei C L, Zhang X, Guo X P, Gao H, Bao Y Q, Wan J M. Phosphatidylserine synthase controls cell elongation especially in the uppermost internode in rice by regulation of exocytosis. PLoS One, 2016, 11: e0153119.
[19] 吴昆. 水稻矮秆包穗突变体dsp1的遗传分析与基因定位. 扬州大学硕士学位论文, 江苏扬州, 2009.
Wu K. Genetic Analysis and Gene Mapping of Dwarf Heading Mutant dsp1 in Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2009. (in Chinese with English abstract)
[20] 王伟平, 朱飞舟, 唐俐, 陈立云, 武小金. 一种水稻全包穗突变体的发现及初步分析. 中国农学通报, 2008, 24(6): 212-216.
Wang W P, Zhu F Z, Tang L, Chen L Y, Wu X J. Discovery and preliminary analysis of a rice mutant with fully sheathed panicle. Chin Agric Sci Bull, 2008, 24(6): 212-216. (in Chinese with English abstract)
[21] Zhu Y Y, Nomura T, Xu Y H, Zhang Y Y, Peng Y, Mao B Z, Hanada A, Zhou H C, Wang R X, Li P J, Zhu X D, Mander L, Kamiya Y, Yamaguchi S, He Z H. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006, 18: 442-456.
doi: 10.1105/tpc.105.038455
[22] 马进. 水稻磷脂酰丝氨酸合酶OsPSS/SUI1的图位克隆和功能分析. 中国农业科学院博士学位论文, 北京, 2015.
Ma J. Positional Cloning and Functional Study of Phosphatidylserine Synthase OsPSS/SUI1 in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences,Beijing, China, 2015. (in Chinese with English abstract)
[23] Haigler C H, Brown R M. Transport of rosettes from the golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma, 1986, 134: 111-120.
doi: 10.1007/BF01275709
[24] Hayashi T, Yoshida K, Woopark Y, Konishi T, Baba K. Cellulose metabolism in plants. Inter Rev Cytol, 2005, 247: 1-34.
doi: 10.1016/S0074-7696(05)47001-1
[25] Libertini E, Li Y, McQueen-Mason S J. Phylogenetic analysis of the plant endo-β-1,4-glucanase gene family. J Mol Evol, 2004, 58: 506-515.
doi: 10.1007/s00239-003-2571-x pmid: 15170254
[26] Xie G S, Yang B, Xu Z D, Li F C, Guo K, Zhang M L, Wang L Q, Zou W H, Wang Y T, Peng L C. Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice. PLoS One, 2013, 8: e50171.
doi: 10.1371/journal.pone.0050171
[27] Henrissat B A. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J, 1991, 280: 309-316.
doi: 10.1042/bj2800309
[28] Yukihiro N, Ma Z Y, Liu X T, Qian X N, Zhang X R, Antje V S, Koiwaa H. Multiple quality control mechanisms in the ER and TGN determine subcellular dynamics and salt-stress tolerance function of KORRIGAN1. Plant Cell, 2020, 32: 470-485.
doi: 10.1105/tpc.19.00714
[29] Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H. A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J, 1998, 17: 5563-5576.
doi: 10.1093/emboj/17.19.5563 pmid: 9755157
[30] Zhou H L, He S J, Cao Y R, Chen T, Du B X, Chu C X, Zhang J S, Chen S Y. OsGLU1, a putative membrane-bound endo-1, 4-beta-D-glucanase from rice, affects plant internode elongation. Plant Mol Biol, 2006, 60: 137-151.
doi: 10.1007/s11103-005-2972-x
[31] Zhang J W, Lei X, Wu Y R, Chen X A, Liu Y, Zhu S H, Ding W N, Wu P, Yi K K. OsGLU3, a putative membrane-bound endo-1, 4-β-glucanase, is required for root cell elongation and division in rice (Oryza sativa L.). Mol Plant, 2012, 5: 176-186.
doi: 10.1093/mp/ssr084
[32] Persson S, Wei H R, Milne J, Page G P, Somerville C R. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA, 2005, 102: 8633-8638.
doi: 10.1073/pnas.0503392102 pmid: 15932943
[33] Vain T, Crowell E F, Timpano H, Biot E, Desprez T, Mansoori N, Trindade L M, Pagant S, Robert S, Hofte H, Gonneau M, Vernhettes S. The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol, 2014, 165: 1521-1532.
pmid: 24948829
[34] Jennifer L. Endosidin20: a key to unlock the secrets of cellulose biosynthesis. Plant Cell, 2020, 32: 2061-2062.
doi: 10.1105/tpc.20.00382
[35] Wang L Q, Guo K, Li Y, Tu Y Y, Hu H Z, Wang B R, Cui X C. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10: 282.
doi: 10.1186/1471-2229-10-282 pmid: 21167079
[36] Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol, 2003, 133: 73-83.
doi: 10.1104/pp.103.022442 pmid: 12970476
[37] Burton R A, Gidley M J, Fincher G B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol, 2010, 6: 724-732.
doi: 10.1038/nchembio.439 pmid: 20852610
[38] Rips S, Bentley N, Jeong I S, Welch J L, Antje V S, Hisashi K. Multiple N-glycans cooperate in the subcellular targeting and functioning of Arabidopsis KORRIGAN1. Plant Cell, 2014, 26: 3792-3808.
doi: 10.1105/tpc.114.129718
[39] Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin T, Persson S, Somerville C. Identification of a novel CESA-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA, 2010, 107: 12866-12871.
doi: 10.1073/pnas.1007092107
[40] Zhu X Y, Li S D, Pan S Q, Xin X R, Gu Y. CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc Natl Acad Sci USA, 2018, 115: e3578.
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 田彪, 丁仕林, 刘朝雷, 阮班普, 姜洪真, 郭锐, 董国军, 胡光莲, 郭龙彪, 钱前, 高振宇. 水稻苗期根部性状的遗传分析和最长根长QTL qLRL4的精细定位[J]. 作物学报, 2021, 47(10): 1863-1873.
[3] 周练, 刘朝显, 陈秋栏, 王文琴, 姚顺, 赵子堃, 朱思颖, 洪祥德, 熊雨涵, 蔡一林. 玉米籽粒缺陷突变基因dek54的精细定位及候选基因分析[J]. 作物学报, 2021, 47(10): 1903-1912.
[4] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[5] 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024.
[6] 秦利萍,董二飞,白洋,周练,任岚扬,张任凤,刘朝显,蔡一林. 玉米tasselseed突变体ts12的遗传分析与分子鉴定[J]. 作物学报, 2020, 46(5): 690-699.
[7] 宋欣冉, 胡书婷, 张凯, 崔则瑾, 李建生, 杨小红, 白光红. 玉米籽粒突变体dek101的表型分析和精细定位[J]. 作物学报, 2020, 46(12): 1831-1838.
[8] 孙琦, 赵志超, 张瑾晖, 张锋, 程治军, 邹德堂. 水稻包穗突变体sui2的遗传分析和基因精细定位[J]. 作物学报, 2020, 46(11): 1734-1742.
[9] 金迪,王冬至,王焕雪,李润枝,陈树林,阳文龙,张爱民,刘冬成,詹克慧. 小麦芒长抑制基因B2的精细定位与候选基因分析[J]. 作物学报, 2019, 45(6): 807-817.
[10] 刘忠祥,杨梅,殷鹏程,周玉乾,何海军,邱法展. 玉米株高主效QTL qPH3.2精细定位及遗传效应分析[J]. 作物学报, 2018, 44(9): 1357-1366.
[11] 肖湘谊,史学涛,盛浩闻,刘金灵,肖应辉. 水稻抗稻瘟病基因Pi47的精细定位和候选基因分析[J]. 作物学报, 2018, 44(7): 977-987.
[12] 刘宝玉, 刘军化, 杜丹, 闫萌, 郑丽媛, 吴雪, 桑贤春, 张长伟. 水稻类病斑突变体spl34的鉴定与基因精细定位[J]. 作物学报, 2018, 44(03): 332-342.
[13] 白娜,李永祥,焦付超,陈林,李春辉,张登峰,宋燕春,王天宇,黎裕,石云素. 玉米穗行数主效位点qKRN5.04精细定位与遗传效应解析[J]. 作物学报, 2017, 43(01): 63-71.
[14] 郭国强,孙学武,孙平勇,尹建英,何强,袁定阳,邓华凤,袁隆平. 水稻斑马叶突变体zebra1349的表型鉴定及基因精细定位[J]. 作物学报, 2016, 42(07): 957-965.
[15] 李广贤,姚方印,侯恒军,孙召文,姜明松,朱文银,周学标. 水稻黄绿叶突变体ygl209的遗传分析与目标基因精细定位[J]. 作物学报, 2015, 41(10): 1603-1611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .