欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (9): 1357-1366.doi: 10.3724/SP.J.1006.2018.01357

• 研究论文 • 上一篇    下一篇

玉米株高主效QTL qPH3.2精细定位及遗传效应分析

刘忠祥1,*(),杨梅2,*(),殷鹏程2,周玉乾1,何海军1,邱法展2,*()   

  1. 1 甘肃省农业科学院作物研究所, 甘肃兰州 730070
    2 华中农业大学作物遗传改良国家重点实验室, 湖北武汉 430070
  • 收稿日期:2018-01-08 接受日期:2018-04-11 出版日期:2018-09-10 网络出版日期:2018-05-14
  • 通讯作者: 刘忠祥,杨梅,邱法展
  • 基金资助:
    本研究由国家自然科学基金项目(31760390)资助

Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.)

Zhong-Xiang LIU1,*(),Mei YANG2,*(),Peng-Cheng YIN2,Yu-Qian ZHOU1,Hai-Jun HE1,Fa-Zhan QIU2,*()   

  1. 1 Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2018-01-08 Accepted:2018-04-11 Published:2018-09-10 Published online:2018-05-14
  • Contact: Zhong-Xiang LIU,Mei YANG,Fa-Zhan QIU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31760390)

摘要:

株高是影响玉米产量的重要因子之一, 节间数目和节间长度是导致株高差异的主要因素。本研究发现2个高代回交重组自交系W1和W2株高差异显著(P<0.001), 二者穗上部和穗下部节间数目都相同, 细胞形态分析发现节间细胞长度是引起二者株高差异的主要原因; 外源GA试验结果表明控制株高差异的QTL/基因是GA途径之外的新基因。因此, 利用来源于W1和W2的F2及F2:3家系群体在2年3个环境中将控制株高的主效QTL qPH3.2共定位在第3染色体标记C42-P17之间20 Mb范围内, 最高可解释22.22%的表型变异。进一步利用目标区段重组交换单株及自交后代家系将qPH3.2分解为2个主效QTL qPH3.2.1qPH3.2.2; 随后利用目标区段的跨叠系将qPH3.2.1qPH3.2.2分别精细定位在YH305-Y72 (2 Mb)及YH112-Y150 (1.6 Mb)之间。本研究的结果为玉米株高的遗传改良提供了真实可靠的遗传位点, 也为后续株高QTL的克隆奠定了良好的工作基础。

关键词: 株高, 遗传解析, 精细定位, 重组交换, 玉米

Abstract:

Plant height is one of the most important factors affecting maize yield, which is determined by the number and the length of internode in maize. In this research, two advanced-backcross recombinant inbred lines (W1 and W2) with significant difference in plant height were used. They have the same number of internodes. We found that the different cell lengths of the internode in upper spike were the main reason causing the difference in plant height. The results of exogenous GA test showed that the QTL/genes controlling plant height were not included in GA pathway. The F2 and F2:3 populations derived from W1 and W2 were used to map the QTLs associated with plant height, showing that one major named qPH3.2 was commonly identified under three different environments in two years which was located on chromosome 3 between markers C42 and P17 with 20 Mb and could explain 22.22% of phenotypic variation. On the basis of the primary mapping results, QTL qPH3.2 was divided into two major QTLs qPH3.2.1 and qPH3.2.2 via recombinant exchange individuals and its self-cross progeny. Furthermore, we did the fine mapping work for qPH3.2.1 and qPH3.2.2 using substitution lines. The qPH3.2.1 was fine-mapped to the region of about 2 Mb between markers YH305 and Y72, and qPH3.2.2 was fine-mapped to the region of about 1.6 Mb between markers YH112 and Y150, which all showed the positive additive effects. The results of this research provide reliable genetic loci for the genetic improvement of plant height in maize, and a good foundation for cloning QTLs for plant height in the future.

Key words: plant height, genetic analysis, fine mapping, recombinant exchange, Zea mays L.

图1

RIL系W1和W2的株高比较 A: 亲本W1和W2的株高表型; B: 亲本在湖北武汉(15WH)、湖北黄冈(16HG)、山东潍坊(16SD)的株高表型差异分析。"

图2

W1和W2的节间长度比较*、**、***分别表示在P<0.05, 0.01, 0.001概率水平下差异极显著, 误差线代表SD, nW1=30, nW2=49。穗上节间用1、2、3、4、5、6表示, 穗下节间用-1、-2、-3、-4、-5、-6表示, 雄穗用T表示。"

图3

节间细胞形态学观察 A和B分别是W1和W2的徒手切片(比例尺: 500 μm); C为W1和W2节间细胞长度比较。"

表1

外源GA处理株高结果"

对照CK GA
W1 149.33±3.39 161.83±6.99***
W2 143.78±3.60 156.41±6.49***

图4

外源GA处理对W1和W2株高的效应 A和B分别为W1的处理与对照; C和D分别为W2的处理与对照。"

表2

F2:3群体株高及穗位高的表型统计"

性状
Trait
环境
Environment
均值
Average (cm)
范围
Range (cm)
变异系数
CV (%)
偏度Skewness 峰度
Kurtosis
P
P-value
株高PH 2013WH 165.47 116.50-191.00 6.76 -0.379 0.527 0.19ns
2014HG 127.60 104.92-160.57 6.23 0.163 0.335 0.32ns
2014SD 162.71 128.41-192.81 5.44 0.042 0.337 0.92ns
穗位高EH 2014HG 42.77 22.96-65.79 12.50 0.319 0.844 0.85ns
2014SD 60.94 42.86-78.59 8.80 0.168 0.113 0.98ns

表3

F2:3家系株高和穗位高遗传力分析"

性状
Trait
环境
Environment
遗传方差
Genetic variance
剩余方差
Residual variance
遗传力
Heritability (%)
株高PH
2014HG 100.08*** 38.03 83.04
2014SD 157.54*** 46.49 87.14
穗位高EH
2014HG 44.53*** 15.74 84.98
2014SD 55.84*** 22.10 80.84

表4

3个环境下定位到的控制玉米株高(PH, cm)的主效QTL (qPH3.2)"

环境
Environment
范围
Range (cM)
相邻标记
Flanking markers
峰值标记
Peak position (cM)
bin LOD 加性效应
A
显性效应
D
D/A 基因作用
G
贡献率PVE%
2013WH 59.09-81.46 bnlg602-SSR5 73.51 3.04-3.05 4.98 4.42 0.35 0.08 A 8.47
2014HG 59.09-81.46 bnlg602-SSR5 75.51 3.04-3.05 13.85 4.29 1.11 0.26 PD 22.22
2014SD 71.46-102.9 SSR4-umc2266 87.01 3.05-3.06 12.15 4.37 1.76 0.40 PD 14.21

表5

RHL (Y36)的单标记分析"

标记
Marker
P
P-value
AA qPH3.2 aaW2
均值±标准差
Mean±SD
群体
Size of population
均值±标准差
Mean±SD
个体数
Number of individual
C42 6E-04 154.2±4.2 20 147.1±4.8 24
Y45 4E-09 155.8±5.1 19 141.9±6.1 21
Y72 1E-09 155.3±6.0 23 141.5±6.3 25
YH196 4E-10 155.4±5.6 25 141.4±5.9 22
Y91 2E-06 152.7±5.7 22 141.7±6.6 20

表6

RHL (Y113)的单标记分析"

标记
Marker
P
P-value
AA qPH3.2 aaW2
均值±标准差
Mean±SD
群体
Size of population
均值±标准差
Mean±SD
个体数
Number of individual
YH55 0.03 152.1±3.5 12 149.0±2.8 13
YH61 0.03 153.5±4.4 24 150.8±4.4 26
P17 4E-05 155.1±3.2 14 147.7±4.0 13
YH112 0.04 155.5±3.2 14 151.8±3.2 12
YH121 3E-05 157.2±3.1 21 151.4±3.5 22

图5

qPH3.2.1的精细定位 A: 红色区域为qPH3.2初定位区间, 绿色和蓝色分别是qPH3.2.1和qPH3.2.2重定位区间; B: 利用3个跨叠系N1、N2和N3定位qPH3.2.1; C: qPH3.2.1精细定位结果; N代表评估表型的单株数目。AA表示携带qPH3.2.1位点的等位基因; aa是以W2为背景的等位基因。"

图6

qPH3.2.2的精细定位 A: 红色区域为qPH3.2初定位区间, 绿色和蓝色分别是qPH3.2.1和qPH3.2.2重定位区间; B: 利用2个跨叠系N4和N5定位qPH3.2.2; C: qPH3.2.2精细定位结果。N代表评估表型的单株数目。AA表示携带qPH3.2.2位点的等位基因; aa是以W2为背景的等位基因。"

[1] Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H . Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011,122:1517-1536
[2] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S . Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003,302:81-84
[3] Fu Z, Shao K K, Chen D Z, Wang B M, Xu Z, Ding D, Tang J . Correlation analysis of the internode number above ear and lodging resistance in maize. J Henan Agric Univ, 2011,45:149-154
[4] Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti M C, Castelletti S, Tuberosa R . Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol, 2011,11:1-15
doi: 10.1186/1471-2229-11-4 pmid: 21211047
[5] Kong L J, Ma X J, Lu H, Yuan J H . Effects of environmental factors on plant traits in maize. J Anhui Agric Sci, 2014,42:11641-11643
[6] Brown C L, Sommer H E . Shoot growth and histogenesis of trees possessing diverse patterns of shoot development. Am J Bot, 1992,79:335-346
doi: 10.1002/j.1537-2197.1992.tb14557.x
[7] Brown C L, Pienaar L V . The predominant role of the pith in the growth and development of internodes in Liquidambar styraciflua( Hamamelidaceae): I. Histological basis of compressive and tensile stresses in developing primary tissues. Am J Bot, 1995,82:769-776
[8] Kurotani K I, Hattori T, Takeda S . Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice. Plant Signal Behav, 2015,10:1-4
[9] Yang D L, Yao J, Mei C S, Tong X H, Zeng L J, Li Q, Xiao L T, Sun T P, Li J G, Deng X W, Chin M L, Thomashowb M F, Yang Y N, He Z H, He S Y . Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci USA, 2012,109:1992-1200
[10] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q . Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767
doi: 10.1038/ng.143 pmid: 18454147
[11] Lv H, Zheng J, Wang T, Fu J, Huai J, Min H, Zhang X, Tian B, Shi Y, Wang G . The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Mol Biol, 2014,84:243-257
doi: 10.1007/s11103-013-0129-x pmid: 24214124
[12] Gao S, Fang J, Xu F, Wang W, Chu C . Rice HOX12 regulates panicle exsertion by directly modulating the expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell, 2016,28:680-695
[13] Jiang F, Guo M, Yang F, Duncan K, Jackson D, Rafalski A, Wang S, Li B . Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One, 2012,7(5):e37040
[14] Berke T G , ocheford T R. Rquantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995,35:1542-1549
doi: 10.2135/cropsci1995.0011183X003500060004x
[15] Edwards M, Stuber C, Wendel J . Molecular-marker-facilitated investigations of quantitative-trait loci in maize: I. Numbers, genomic distribution and types of gene action. Genetics, 1987,116:113-125
[16] Beavis W, Grant D, Albertsen M, Fincher R . Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991,83:141-145
[17] Lu H, Romero S J, Bernardo R . Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003,107:494-502
[18] Yan J B, Tang J H, Huang Y Q, Shi Y G, Li J S, Zheng Y L . Dynamic analysis of QTL for plant height at different developmental stages in maize ( Zea mays L.). Chin Sci Bull, 2003,48:2601
[19] Lan J H, Chu D . Study on the genetic basis of plant height and ear height in maize ( Zea mays L.) by QTL dissection. Hereditas, 2005,27:925-934
[20] Lima M, de Souza C L, Bento D, de Souza A P, Carlini-Garcia L A . Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed, 2006,17:227-239
doi: 10.1007/s11032-005-5679-4
[21] Tang J, Teng W, Yan J, Ma X, Meng Y, Dai J, Li J S . Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007,155:117-124
[22] Yang X J, Lu M, Zhang S H, Zhou F, Qu Y Y, Xie C X . QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas, 2008,30:1477-1486
[23] Zhang H, Liu X, Wu X, Nan Z, Hui G, Luo Q. Study on QTL identification associated with plant height in maize (Zea mays L.). In: 5th International Conference on Bioinformatics and Biomedical Engineering, IEEE, Wuhan, China, 2011. pp 1-4
[24] 郑德波, 杨小红, 李建生, 严建兵, 张士龙, 贺正华, 黄益勤 . 基于SNP标记的玉米株高及穗位高QTL定位. 作物学报, 2013,39:549-556
Zheng D B, Yang X H, Li J S, Yan J B, Zhang S L, He Z H, Huang Y Q . QTL Identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). Acta Agron Sin, 2013,39:549-556 (in Chinese with English abstract)
[25] 郑克志, 李元, 瞿会, 闫伟, 张旷野, 宋茂兴, 吕香玲, 李凤海, 史振声 . 玉米株高和穗位高的QTL定位. 江苏农业科学, 2015,43(5):61-63
Zheng K Z, Li Y, Zhai H, Yan W, Zhang K Y, Song M X, Lyu X L, Li F H, Shi Z S . Mapping of QTL for plant height an ear height in maize Jiangsu Agric Sci, 2015,43(5):61-63 (in Chinese)
[26] 何坤辉, 常立国, 崔婷婷, 渠建洲, 郭东伟, 徐淑兔, 张兴华, 张仁和, 薛吉全, 刘建超 . 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016,49:1443-1452
He K H, Chang L G, Cui T T, Qu J Z, Guo D W, Xu S T, Zhang W X, Zhang R H, Xue J Q, Liu J C . Mapping of QTL for plant height an ear height in maize under multi-environment Sci Agric Sin, 2016,49:1443-1452 (in Chinese with English abstract)
[27] 李浩川, 陈琼, 杨继伟, 曲彦志, 张慧, 张朝林, 李彦, 贾玺, 刘宗华 . 基于双单倍体群体的玉米株高和穗位高QTL分析. 河南农业大学学报, 2016,50(2):161-166
Li H C, Chen Q, Yang J W, Qu Y Z, Zhang H, Zhang C L, Li Y, Jia X, Liu Z H . QTL analysis of plant and ear height by using DH population in maize J Henan Agric Univ, 2016,50(2):161-166 (in Chinese with English abstract)
[28] Teng F, Zhai L H, Liu R X, Bai W, Wang L Q, Huo D A, Tao Y S, Zheng Y L, Zhang Z X . ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013,73:405-416
doi: 10.1111/tpj.12038 pmid: 23020630
[29] Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R, Briggsav S P . Cloning and characterization of the maize An1 gene. Plant Cell, 1995,7:75-84
doi: 10.1105/tpc.7.1.75 pmid: 7696880
[30] Winkler R G, Helentjaris T . The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995,7:1307-1317
[31] Souza C L, Zinsly J R . Relative genetic potential of brachytic maize ( Zea mays L.) varieties as breeding populations. Revista Brasileira De Genetica, 1985,8:523-533
[32] Fujioka S, Yamane H, Spray C R, Gaskin P, Macmillan J, Phinney B O, Takahashi N . Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol, 1988,88:1367-1372
[33] Phinney B O . Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc Natl Acad Sci USA, 1956,42:185-189
doi: 10.1073/pnas.42.4.185 pmid: 16589846
[34] Cassani E, Bertolini E, Cerino B F, Landoni M, Gavina D, Sirizzotti A, Pilu R . Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breed, 2009,24:375-385
[35] Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T . Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010,51:1854-1868
doi: 10.1093/pcp/pcq153 pmid: 20937610
[36] Phillips K A, Skirpan A L, Liu X, Christensen A, Slewinski T L, Hudson C, Barazesh S, Cohen J D, Malcomber S McSteen P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell, 2011,23:550-566
[37] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L . MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181
[38] Lincoln S E, Daly M J, Lander E S . Constructing Genetic Maps with MapMaker/EXP3. 0. 1992
[39] Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H E, Zhuang J Y, Zheng K L, Liu G F, Wang G C, Sidhu J S, Srivantaneeyakul S, Singh V P, Bagali P G, Prasanna H C ,McLaren G, Khush G S. , Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet, 2003,107:679-690
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[12] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!