欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1466-1479.doi: 10.3724/SP.J.1006.2023.22039

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性

丁杰荣1,**(), 马雅美1,**(), 潘发枝2, 江立群1, 黄文洁3, 孙炳蕊1, 张静1, 吕树伟1, 毛兴学1, 于航1, 李晨1,*(), 刘清1,*()   

  1. 1广东省农业科学院水稻研究所/广东省水稻育种新技术重点实验室/广东省水稻工程实验室, 广东广州 510640
    2华南农业大学, 广东广州 510642
    3广东省农业科学院农业生物基因研究中心/广东省农作物种质资源保护与利用重点实验室, 广东广州 510640
  • 收稿日期:2022-06-22 接受日期:2022-11-25 出版日期:2023-06-12 网络出版日期:2022-12-07
  • 通讯作者: *刘清, E-mail: liuqing198504@126.com;李晨, E-mail: 2369538973@qq.com
  • 作者简介:丁杰荣, E-mail: jierongdjr@163.com;
    马雅美, E-mail: mayamei@gdaas.cn第一联系人:**同等贡献
  • 基金资助:
    广东省发展和改革委、农业农村厅投资项目(粤发改农经[2021]272号);科技创新战略专项资金: 广东省农业科学院高水平人才建设项目(R2020PY-JX001);广东省重点实验室运行费专项(2020B1212060047)

Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance

DING Jie-Rong1,**(), MA Ya-Mei1,**(), PAN Fa-Zhi2, JIANG Li-Qun1, HUANG Wen-Jie3, SUN Bing-Rui1, ZHANG Jing1, LYU Shu-Wei1, MAO Xing-Xue1, YU Hang1, LI Chen1,*(), LIU Qing1,*()   

  1. 1Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou 510640, Guangdong, China
    2South China Agricultural University, Guangzhou 510642, Guangdong, China
    3Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640, Guangdong, China
  • Received:2022-06-22 Accepted:2022-11-25 Published:2023-06-12 Published online:2022-12-07
  • Contact: *E-mail: liuqing198504@126.com;E-mail: 2369538973@qq.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Investment Project of Department of Agriculture and Rural Affairs, Development and Reform Commission, Guangdong province(Yue Fa Gai Nong Jing [2021]272);Special Fund for Scientific Innovation Strategy-Construction of High Level Academy of Agriculture Science(R2020PY-JX001);Guangdong Key Laboratory of New Technology in Rice Breeding(2020B1212060047)

摘要:

泛素受体蛋白DSK2 (dominant suppressor of KAR2)在植物生长发育和逆境胁迫中发挥重要作用, 但其在水稻抗病和渗透胁迫中的作用尚未见报道。本研究发现OsDSK2b受多种逆境的调控, 该基因的表达水平在稻瘟病菌侵染和20% PEG-6000处理后显著降低。时空表达分析表明OsDSK2b基因在三叶期幼苗中的表达水平最高, 亚细胞定位结果显示该蛋白定位于细胞质。接种稻瘟病菌(GD08-T13和Guy11)后, 敲除植株的病斑面积约为0.05 cm2和0.10~0.13 cm2, 远小于野生型植株的病斑面积(0.24 cm2和0.31 cm2)。敲除OsDSK2b显著增强水稻的叶瘟抗性。而且在病原菌侵染后, 敲除植株中病程相关蛋白(PR)基因的表达受到明显诱导。敲除OsDSK2b也显著增强水稻的渗透胁迫抗性, 20% PEG-6000模拟渗透胁迫处理后, OsDSK2b敲除植株的存活率为58.3%~74.0%, 显著高于野生型植株的存活率(17.0%)。OsDSK2b敲除植株的离子渗透率和植株失水率则显著低于野生型植株。扫描显微镜的结果表明, 无论在20% PEG-6000处理前后, 敲除OsDSK2b能够促进气孔的闭合, 且在20% PEG-6000处理后, 这种促进作用会更强。此外, qRT-PCR结果表明, 在20% PEG-6000处理后, OsDSK2b敲除植株中DREB基因以及脱落酸(ABA)合成或通路相关基因的表达水平显著高于野生型植株, 且敲除植株ko6ko14的内源ABA含量分别为314.2 ng g-1和344.4 ng g-1, 显著高于野生型植株的内源ABA含量(206.8 ng g-1), 揭示OsDSK2b参与调控渗透胁迫的过程同时涉及ABA依赖和ABA非依赖途径。本研究通过解析OsDSK2b基因在水稻应对生物与非生物胁迫时所发挥的调控作用, 为水稻抗性品种的选育提供了新的候选基因。

关键词: 水稻(Oryza sativa L.), 稻瘟病, 渗透胁迫, PR, DREB, ABA

Abstract:

The ubiquitin receptor protein DSK2 (dominant suppressor of KAR2) plays an important role in the growth, development, and stress tolerance in plant, but its role in rice disease resistance and osmotic stress has not been reported yet. In this study, we identified that OsDSK2b was regulated by various stresses, and the relative expression level of this gene decreased significantly after Magnaporthe oryzae infection and 20% PEG-6000 treatment. The spatio-temporal expression analysis showed that the relative expression level of OsDSK2b was highest at three-leaf seedling stage. The subcellular localization analysis demonstrated that OsDSK2b was localized in the cytoplasm in rice protoplast. The lesion area of OsDSK2b knockout plants was about 0.05 cm2 and 0.10-0.13 cm2, which was much smaller than wild-type plants (0.24 cm2 and 0.31 cm2) after inoculation with Magnaporthe oryzae (GD08-T13 and Guy11). Compared with wild-type plants, knockout of OsDSK2b significantly enhanced the leaf blast resistance in rice, and the relative expression levels of pathogenesis-related protein (PR) genes were induced significantly in OsDSK2b knockout plants after Magnaporthe oryzae (Guy11) infection. The knockout of OsDSK2b also significantly enhanced the osmotic stress tolerance in rice. OsDSK2b knockout plants had higher survival rate (58.3%-74.0%) than wild-type plants (17.0%) after 20% PEG-6000 treatment. Meanwhile, compared with wild-type plants, OsDSK2b knockout plants had lower ion permeability and water loss rate after 20% PEG-6000 treatment. Scanning microscopy revealed that knockout of OsDSK2b could promote the stomatal closure both before and after 20% PEG-6000 treatment, and the promotion effect was stronger after osmotic stress treatment. In addition, qRT-PCR results showed that the relative expression level of DREB genes and abscisic acid (ABA) synthesis or pathway-related genes were significantly higher in OsDSK2b knockout plants than wild-type plants after osmotic stress treatment. The endogenous ABA contents of ko6 and ko14 knockout plants were 314.2 ng g-1 and 344.4 ng g-1, respectively, which were significantly higher than wild-type plants (206.8 ng g-1). These results indicated that OsDSK2b could regulate rice osmotic stress through both the ABA-dependent and ABA-independent pathways. This study provides a new candidate gene for the breeding of rice resistant varieties by analyzing the regulatory role of OsDSK2b in rice coping with biotic and abiotic stresses.

Key words: rice (Oryza sativa L.), rice blast, osmitic stress, PR, DREB, ABA

表1

本研究所使用的引物信息表"

引物名称
Primer name
引物序列
Primer sequence (5°−3°)
OsDSK2b-6a-F/R TTGGTTGGTTAGAACCCTGACGGCAGCCAAGCCAGCA/TCAGGGTTCTAACCAACCAAGTTTTAGAGCTAGAAAT
OsDSK2b-6b-F/R CTGCTAGGAGCAGCTGAAGCAACACAAGCGGCAGC/CTTCAGCTGCTCCTAGCAGGTTTTAGAGCTAGAAAT
Pps-GGL/Pgs-GG2 TTCAGAGGTCTCTCTCGACTAGTATGGAATCGGCAGCAAAGG/AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC
Pps-GG2/Pgs-GGR TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG/AGCGTGGGTCTCGACCGACGCGTATCCATCCACTCCAAGCTC
U-F/gR-R CTCCGTTTTACCTGTGGAATCG/CGGAGGAAAATTCCATCCAC
SP1/SP2 CCCGACATAGATGCAATAACTTC/GCGCGGTGTCATCTATGTTACT
OsDSK2bJC-F/R TCTTTTCTTGCTTCTCACACTCC/TTGCCAGTAGAACCTGCCCG
OsDSK2b-F/R TGGTAGCCAAGGAGGCAATG/ATTGCCAAGAAGACGCTCCA
PR1a-F/R CGTCTTCATCACCTGCAACTACTC/CATGCATAAACACGTAGCATAGCA
PR2-F/R CCTTCACCAAGTATCTGCGA/GTCTAGCGCATTCTGCAAAC
PR5-F/R ACGAAATACTCCAAGTTCTTCAAGG/GTAATTTGTTCCGGCAGGGC
PR8-F/R TCTACGACGTGCAGAACAACTTCAG/TCCAACTCAACCACTGTGCAAGTAA
PR10a-F/R TGTGAGCCACGACAAATCCA/TGATCTCCCAGCAGCAAACA
PR10b-F/R GAGAGGCTGTGGAAGGTCTG/CCTTTAGCACGTGAGTTGCG
DREB1A-F/R TGGAGCTACTAGAGCTCAATCAACTG/TGGCATCGGAAGCCAGAA
DREB1B-F/R ACAGAGTAGGCAATGAGACTGAGGAT/TTACAGGAATTCATTGACTGCACAT
DREB2A-F/R GGAATCTCCTCCTTTCATCGTG/TTCCGCTCCTGACAAACACG
DREB2B-F/R TTGTGCTTATGACGAGGCAGC/GCTAGTGCAACCTGAACGGAAG
引物名称
Primer name
引物序列
Primer sequence (5°−3°)
LEA3-F/R CGGCAGCGTCCTCCAAC/CGGTCATCCCCAGCGTG
LIP9-F/R CCTCTTCGACAACCTCCTTGGCA/CTTCCTCATCACTCGACGAGCT
Rab16A-F/R CACACCACAGCAAGAGCTAAGTG/TGGTGCTCCATCCTGCTTAAG
ABI2-F/R TTGTGGAGACTCACGGGCAGTG/CGAGACATTCGTCATCCTTTGC
NCED3-F/R ACGTGATCAAGAAGCCGTACCT/GCTGGTCGAGCGGGATCT
NCED4-F/R GCCGAGACACGCATTGG/GTGAAGGTGGCGACAGCAA
EF1α-F/R TTTCACTCTTGGTGTGAAGCAGAT/GACTTCCTTCACGATTTCATCGTAA

图1

OsDSK2b的表达受多种胁迫影响以及OsDSK2b在日本晴中的时空表达模式 A: OsDSK2b在稻瘟病分离株Guy11、20% PEG-6000、150 mmol L-1 NaCl和100 μmol L-1ABA处理前后的相对表达量; B: OsDSK2b在日本晴不同组织(2周龄幼苗、幼根、茎节、倒二叶、旗叶、孕穗期根、幼穗和抽穗期穗)中的相对表达量; C: OsDSK2b蛋白在水稻原生质体中的亚细胞定位(标尺为10 μm)。数据均为3个生物学重复的平均值(±标准差) (Dunnett’s test, *: P < 0.05, **: P < 0.01)"

图2

敲除OsDSK2b增强水稻对稻瘟病的抗性 A: OsDSK2b的结构和各敲除株系的靶序列突变情况。外显子和内含子分别用黑色矩形和黑线表示, 红色字体表示CRISPR载体构建的靶序列, 蓝色字体表示插入的碱基, 省略号表示缺失的碱基; B: 打孔接种GD08-T13菌株7 d后, 野生型日本晴和OsDSK2b敲除株系的表型图; C: 打孔接种GD08-T13菌株7 d后, OsDSK2b敲除株系和野生型日本晴的病斑面积统计图; D: 离体接种Guy11菌株7 d后, 野生型日本晴和OsDSK2b敲除株系的表型图; E: 接种Guy11菌株7 d后, OsDSK2b敲除株系和野生型日本晴的病斑面积统计图。 数据为3个生物学重复的平均值(±标准差) (Dunnett’s测验, *: P < 0.05, **: P < 0.01)。"

图3

OsDSK2b调控病程相关蛋白PR基因的表达 稻瘟病菌Guy11接种前(0 h)和接种后(2 d和4 d), 野生型日本晴和OsDSK2b敲除植株叶片中的PR基因的相对表达量。数据均为3个生物学重复的平均值(±标准差) (Dunnett’s测验, *: P < 0.05; **: P < 0.01)。"

图4

敲除OsDSK2b增强水稻对渗透胁迫的抗性 A: 20% PEG-6000处理前与处理3?d再复水生长5?d后, 野生型日本晴和OsDSK2b敲除株系的表型图; B: 20% PEG-6000处理3?d再复水生长5 d后, 野生型日本晴和OsDSK2b株高统计图; C: 20% PEG-6000处理前与处理5?d再复水生长5 d后, 野生型日本晴和OsDSK2b敲除株系的表型图; D: 20% PEG-6000处理5 d再复水生长5 d后, 野生型日本晴和OsDSK2b的存活率统计图; E: 20% PEG-6000处理前后, 野生型日本晴和OsDSK2b的离子渗透率统计图; F: 野生型日本晴与OsDSK2b敲除株系地上部在0、30、60、90、120、180、240和300 min的离体失水率统计图。数据均为3个生物学重复的平均值(±标准差) (Dunnett’s测验, *: P < 0.05; **: P < 0.01)。"

图5

敲除OsDSK2b降低气孔开度 A: 不同开放程度的气孔图。标尺为10 μm; B: 正常条件下和20% PEG-6000处理4 h后, 野生型日本晴和OsDSK2b敲除株系中3种不同开放程度的气孔占比统计图。结果以3个生物学重复的平均值(±标准差)表示, 每个重复至少统计300个以上气孔; C: 野生型日本晴和OsDSK2b敲除株系中气孔密度统计图; D: 野生型日本晴和OsDSK2b敲除株系中气孔大小统计图。结果以3个生物学重复的平均值(±标准差)表示, 每个重复至少统计100个气孔。"

图6

OsDSK2b调控抗逆相关基因的表达 A: 20% PEG-6000处理前(0 h)和处理后(4 h)野生型日本晴和OsDSK2b敲除株系中DREB基因的相对表达量; B: 20% PEG-6000处理前(0 h)和处理后(4 h)野生型日本晴和OsDSK2b敲除株系中ABA信号通路相关基因的相对表达量。数据均为3个生物学重复的平均值(±标准差) (Dunnett’s测验, *: P < 0.05; **: P < 0.01)。"

图7

OsDSK2b影响20% PEG-6000处理下水稻内源ABA的积累 数据均为6个生物学重复的平均值(±标准差) (Dunnett’s测验, *: P < 0.05; **: P < 0.01)。"

[1] 王亦栖, 余炳伟, 颜爽爽, 邱正坤, 陈长明, 雷建军, 田时炳, 曹必好. 植物泛素基因研究进展. 中国农学通报, 2020, 36(20): 14-22.
doi: 10.11924/j.issn.1000-6850.casb20190500148
Wang Y Q, Yu B W, Yan S S, Qiu Z K, Chen C M, Tian S B, Cao B H. Advances in research on plant ubiquitin genes. Chin Agric Sci Bull, 2020, 36(20): 14-22. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb20190500148
[2] 盛仙永. 泛素/蛋白酶体途径在青扦花粉萌发及花粉管生长过程中的作用. 西北大学博士学位论文, 陕西西安, 2006.
Sheng X Y. Roles of the Ubiquitin/Proteasome Pathway in Picea wilsonii Pollen Germination and Tube Growth. PhD Dissertation of Northwest University, Xi’an, Shaanxi, China, 2006. (in Chinese with English abstract)
[3] Ko J H, Yang S H, Han K H. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J, 2006, 47: 343-355.
doi: 10.1111/tpj.2006.47.issue-3
[4] Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280: 1091-1094.
doi: 10.1126/science.280.5366.1091 pmid: 9582125
[5] Fu H, Lin Y L, Fatimababy A S. Proteasomal recognition of ubiquitylated substrates. Trends Plant Sci, 2010, 15: 375-386.
doi: 10.1016/j.tplants.2010.03.004 pmid: 20399133
[6] Zhang H, Yang X, Ying Z, Liu J, Liu Q. Toxoplasma gondii UBL-UBA shuttle protein DSK2s are important for parasite intracellular replication. Int J Mol Sci, 2021, 22: 7943.
doi: 10.3390/ijms22157943
[7] Wang J, Qin H, Zhou S, Wei P C, Zhang H W, Zhou Y, Miao Y C, Huang R F. The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice. Plant Cell, 2020, 32: 414-428.
doi: 10.1105/tpc.19.00593
[8] Fatimababy A S, Lin Y L, Usharani R, Radjacommare R, Wang H T, Tsai H L, Lee Y, Fu H. Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis. FEBS J, 2010, 277: 796-816.
doi: 10.1111/j.1742-4658.2009.07531.x pmid: 20059542
[9] Díaz-Martínez L A, Kang Y, Walters K J, Clarke D J. Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. Cell Div, 2006, 1: 28.
pmid: 17144915
[10] Wang D Y, Lv C, Guan Y, Ni X Y, Wu F Z. Dsk2 involves in conidiation, multi-stress tolerance and thermal adaptation in Beauveria bassiana. Environ Microbiol Rep, 2021, 13: 384-393.
doi: 10.1111/emi4.v13.3
[11] Kaur N, Zhao Q Z, Xie Q, Hu J P. Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins. J Integr Plant Biol, 2013, 55: 108-120.
doi: 10.1111/jipb.12014
[12] 汪文娟, 苏菁, 陈深, 杨健源, 陈凯玲, 冯爱卿, 汪聪颖, 封金奇, 陈炳, 朱小源. 广东省侵染美香占2号的稻瘟病菌致病性及无毒基因变异分析. 中国农业科学, 2022, 55: 1346-1358.
doi: 10.3864/j.issn.0578-1752.2022.07.007
Wang E J, Su J, Chen S, Yang J Y, Chen K L, Feng A Q, Wang C Y, Feng J Q, Chen B, Zhu X Y. Pathogenicity and avirulence genes variation of Magnaporthe oryzae from a rice variety Meixiangzhan 2 in Guangdong province. Sci Agric Sin, 2022, 55: 1346-1358. (in Chinese with English abstract)
[13] Muthukrishnan S, Liang G H, Trick H N, Gill B S. Pathogenesis-related proteins and their genes in cereals. Plant Cell Tissue Organ Cult, 2001, 64: 93-114.
doi: 10.1023/A:1010763506802
[14] Alexander D, Goodman R M, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci USA, 1993, 90: 7327-7331.
doi: 10.1073/pnas.90.15.7327 pmid: 8346252
[15] Kauffmann S, Legrand M, Geoffroy P, Fritig B. Biological function of ‘pathogenesis-related’ proteins: four PR proteins of tobacco have 1,3-β-glucanase activity. EMBO J, 1987, 6: 3209-3212.
doi: 10.1002/j.1460-2075.1987.tb02637.x pmid: 16453802
[16] Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G S, Muthukrishnan S, Datta S K. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet, 1999, 98: 1138-1145.
doi: 10.1007/s001220051178
[17] Park C H, Kim S, Park J Y, Ahn I P, Jwa N S, Im K H, Lee Y H. Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice. Mol Cells, 2004, 17: 144-150.
[18] Midoh N, Iwata M. Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol, 1996, 37: 9-18.
doi: 10.1093/oxfordjournals.pcp.a028918 pmid: 8720923
[19] 侯明明. 病程相关蛋白质在水稻发育及与白叶枯病菌互作过程中的表达研究. 河北农业大学硕士论文, 河北保定, 2011.
Hou M M. Characteristic Expression of Pathogenesis-related Proteins in Rice Development and Interaction with Xanthomonas oryzae pv. oryzae. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2011. (in Chinese with English abstract)
[20] 郑家国, 任光俊, 陆贤军, 姜心禄. 花后水分亏缺对水稻产量和品质的影响. 中国水稻科学, 2003, 17: 239-243.
Zheng J G, Ren G J, Lu X J, Jiang X L. Effects of water stress on rice grain yield and quality after heading stage. Chin J Rice Sci, 2003, 17: 239-243. (in Chinese with English abstract)
[21] 王平荣, 邓晓建, 高晓玲, 陈静, 万佳, 姜华, 徐正君. DREB 转录因子研究进展. 遗传, 2006, 28: 369-374.
Wang P R, Deng X J, Guo X L, Chen J, Wang J, Jiang H, Xu Z J. Progress in the study on DREB transcription factor. Hereditas (Beijing), 2006, 28: 369-374. (in Chinese with English abstract)
[22] Liu Q, Yan S J, Huang W J, Yang J Y, Dong J F, Zhang S H, Zhao J L, Yang T F, Mao X X, Zhu X Y, Liu B, 2018b. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice. Plant Mol Biol, 98: 289-302.
doi: 10.1007/s11103-018-0768-z
[23] 王彬, 陈敏氡, 林亮, 叶新如, 朱海生, 温庆放. 植物干旱胁迫的信号通路及相关转录因子研究进展. 西北植物学报, 2020, 40: 792-1806.
Wang B, Chen M D, Lin L, Ye X R, Zhu H S, Wen Q F. Signal plant pathways and related transcription factors of drought stress in plants. Acta Bot Boreali-Occident Sin, 2020, 40: 1792-1806. (in Chinese with English abstract)
[24] Xie X R, Ma X L, Zhu Q L, Zeng D C, Li G S, Liu Y G. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant, 2017, 10: 1246-1249.
doi: 10.1016/j.molp.2017.06.004
[25] 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/ Cas9多基因编辑载体构建和突变分析的操作方法. 中国科学: 生命科学, 2018, 48: 783-794.
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. Sci Sin (Vitae), 2018, 48: 783-794. (in Chinese with English abstract)
[26] Zhang Y, Su J B, Duan S, Ao Y, Dai J R, Liu J, Wang P, Li Y G, Liu B, Feng D R, Wang J F, Wang H B. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 2011, 7: 30.
doi: 10.1186/1746-4811-7-30 pmid: 21961694
[27] Ding B, Bellizzi M D R, Ning Y S, Meyers B C, Wang G L. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. Plant Cell, 2012, 24: 3783-3794.
doi: 10.1105/tpc.112.101972
[28] Pan X Q, Welti R, Wang X M. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Prot, 2010, 5: 986-992.
doi: 10.1038/nprot.2010.37
[29] Hui W K, Wang Y, Yan S J, Shi J F, Huang W J, Zayed M Z, Peng C C, Chen X Y, Wu G J. Simultaneous analysis of endogenous plant growth substances during floral sex differentiation in Jatropha curcas L. using HPLC-ESI-MS/MS. Sci Hortic (Amsterdam), 2018, 241: 209-217.
doi: 10.1016/j.scienta.2018.06.086
[30] Zhao J H, Zhang W, Da S J, Liu X C, Duan J. Rice histone deacetylase HDA704 positively regulates drought and salt tolerance by controlling stomatal aperture and density. Planta, 2021, 254: 79.
doi: 10.1007/s00425-021-03729-7 pmid: 34542712
[31] Park C J, Han S W, Chen X, Ronald P C. Elucidation of XA21- mediated innate immunity. Cell Microbiol, 2010, 12: 1017-1025.
doi: 10.1111/j.1462-5822.2010.01489.x
[32] Son S, An H K, Seol Y J, Park S R, Im J H. Rice transcription factor WRKY114 directly regulates the expression of OsPR1a and chitinase to enhance resistance against Xanthomonas oryzae pv. oryzae. Biochem Biophys Res Commun, 2020, 533: 1262-1268.
doi: 10.1016/j.bbrc.2020.09.141
[33] Wang G N, Ding X H, Yuan M, Qiu D Y, Li X H, Xu C G, Wang S P. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Mol Biol, 2006, 60: 437-449.
doi: 10.1007/s11103-005-4770-x
[34] 赵慧. 水稻耐旱性调控网络关键调节基因的克隆及OsERF65的功能研究. 华中农业大学硕士学位论文, 湖北武汉, 2020.
Zhao H. Cloning of Key Regulatory Genes in Rice Drought Tolerance Regulatory Network and Functional Study of OsERF65. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2020. (in Chinese with English abstract)
[35] Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot, 2011, 62: 4731-4748.
doi: 10.1093/jxb/err210 pmid: 21737415
[36] Assmann S M, Wang X Q. From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol, 2001, 4: 421-428.
pmid: 11597500
[1] 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183.
[2] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[3] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[4] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[5] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[6] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答[J]. 作物学报, 2022, 48(12): 3004-3017.
[11] 杨文静, 陆海芹, 陈吴钧, 曾蕾, 谢涛, 蒋金金, 王幼平. Bna-miR171g提高甘蓝型油菜耐渗透胁迫能力的功能鉴定[J]. 作物学报, 2022, 48(12): 3071-3079.
[12] 李相辰, 沈旭, 周新成, 陈新, 王海燕, 王文泉. 木薯PEPC基因家族成员鉴定及表达分析[J]. 作物学报, 2022, 48(12): 3108-3119.
[13] 陈向前, 姜奇彦, 孙现军, 牛风娟, 张慧媛, 胡正, 张辉. 大豆多基因编辑表达载体的构建及应用[J]. 作物学报, 2022, 48(11): 2706-2714.
[14] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[15] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .