作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2344-2361.doi: 10.3724/SP.J.1006.2023.24246
左春阳(), 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲()
ZUO Chun-Yang(), LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling()
摘要:
漆酶是铜蓝氧化酶蛋白家族的一员, 在植物木质素合成和提高植株抵御胁迫能力等方面发挥着重要作用。本研究从陆地棉基因组中鉴定到104个漆酶基因(GhLAC)家族成员, 进行了系统进化树和组织表达图谱的构建, 并随机选取了20个基因进行荧光定量PCR分析, 验证了表达热图的结果。为进一步探索漆酶在棉花中担当的角色, 本研究采用启动子-GUS融合载体转化拟南芥, 通过转基因拟南芥不同发育过程不同组织GUS染色结果, 分析了陆地棉漆酶基因家族6个成员(GhLAC12A、GhLAC14A、GhLAC20A、GhLAC25D、GhLAC59D、GhLAC63D)的精细表达模式。为探究漆酶在逆境中发挥的作用, 对该6个漆酶基因进行了切割和刺洞2种创伤胁迫诱导表达分析, 并利用2个棉花品系‘84021’ (高温耐受型)和‘H05’ (高温敏感型)在常温和高温胁迫条件下不同时期的花药进行相应基因的荧光定量PCR分析。研究结果表明, 随机挑选的20个基因在根、茎、叶、花瓣、花药和柱头6个组织中差异表达, 大多数基因的表达与转录组结果一致。6个漆酶基因的启动子能够不同程度地驱动GUS基因在种子萌发时期、二叶期、四叶期表达; 创伤处理结果显示GhLAC12A、GhLAC14A的启动子受创伤诱导后驱动GUS蛋白在叶片中表达的能力显著提高, 暗示着这2个基因可能参与创伤胁迫响应。6个GhLACs基因在棉花耐高温品系‘84021’的四分体时期和花药开裂期高温胁迫后都有表达量显著下调的趋势, 推测GhLACs基因可能负调控陆地棉花药高温耐受性。本研究结果为进一步探索漆酶家族基因功能提供了参考。
[1] |
Hüttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biot, 2001, 55: 387-394.
doi: 10.1007/s002530000590 |
[2] |
Piontek K, Antorini M, Choinowski T. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J Biol Chem, 2002, 277: 37663-37669.
doi: 10.1074/jbc.M204571200 pmid: 12163489 |
[3] |
Claus H. Laccases: structure, reactions, distribution. Micron, 2004, 35: 93-96.
doi: 10.1016/j.micron.2003.10.029 pmid: 15036303 |
[4] |
Ander P, Eriksson K E. The importance of phenol oxidase activity in lignin degradation by the white rot fungus Sporotrichum pulverulentum. Arch Microbiol, 1976, 109: 1-8.
doi: 10.1007/BF00425105 |
[5] | Williamson P R. Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front Biosci, 1997, 2: 99-107. |
[6] |
Carbajo J M, Junca H, Terrón M C, González T, Yagüe S, Zapico E, González A E. Tannic acid induces transcription of laccase gene cglcc1 in the white-rot fungus Coriolopsis gallica. Can J Microbiol, 2002, 48: 1041-1047.
pmid: 12619815 |
[7] |
Weech M H, Chapleau M, Pan L, Ide C, Bede J C. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway. J Exp Bot, 2008, 59: 2437-2448.
doi: 10.1093/jxb/ern108 |
[8] |
Sterjiades R, Dean J F D, Eriksson K E. Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol, 1992, 99: 1162-1168.
doi: 10.1104/pp.99.3.1162 pmid: 16668984 |
[9] |
Liang M, Davis E, Gardner D, Cai X, Wu Y. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 2006, 224: 1185-1196.
doi: 10.1007/s00425-006-0300-6 |
[10] |
Wang G D, Li Q J, Luo B, Chen X Y. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol, 2004, 22: 893-897.
doi: 10.1038/nbt982 |
[11] |
Bao W, O’Malley D M, Whetten R, Sederoff R R. A laccase associated with lignification in loblolly pine xylem. Science, 1993, 260: 672-674.
pmid: 17812228 |
[12] |
Berthet S, Demont C N, Pollet B, Bidzinski P, Cézard L, Le B P, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011, 23: 1124-1137.
doi: 10.1105/tpc.110.082792 |
[13] | Miguel P A, Schneider I, Kroll P, Hofhuis H, Metzger S, Pauly M, Hay A. Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. Proc Natl Acad Sci USA, 2022, 119: e2202287119. |
[14] |
Zhang Y C, Yu Y, Wang C Y, Li Z Y, Liu Q, Xu J, Liao J Y, Wang X J, Qu L H, Chen F, Xin P, Yan C, Chu J, Li H Q, Chen Y Q. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol, 2013, 31: 848-852.
doi: 10.1038/nbt.2646 pmid: 23873084 |
[15] |
Zhong J, He W J, Peng Z, Zhang H, Li F, Yao J L. A putative AGO protein, OsAGO17, positively regulates grain size and grain weight through OsmiR397b in rice. Plant Biotechnol J, 2020, 18: 916-928.
doi: 10.1111/pbi.13256 pmid: 31529568 |
[16] |
Sun Y J, Xiong X G, Wang Q, Zhu L, Wang L, He Y, Zeng H L. Integrated analysis of small RNA, transcriptome, and degradome sequencing reveals the miR156, miR5488 and miR399 are involved in the regulation of male sterility in PTGMS rice. Int J Mol Sci, 2021, 22: 2260.
doi: 10.3390/ijms22052260 |
[17] |
Mayer A M, Staples R C. Laccase: new functions for an old enzyme. Phytochemistry, 2002, 60: 551-565.
doi: 10.1016/s0031-9422(02)00171-1 pmid: 12126701 |
[18] |
Jiao X Y, Li G Q, Wang Y, Nie F, Cheng X, Abdullah M, Lin Y, Cai Y P. Systematic analysis of the pleurotus ostreatus laccase gene (PoLac) family and functional characterization of PoLac2 involved in the degradation of cotton-straw lignin. Molecules, 2018, 23: 880.
doi: 10.3390/molecules23040880 |
[19] |
Li L, Steffens J C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 2002, 215: 239-247.
doi: 10.1007/s00425-002-0750-4 pmid: 12029473 |
[20] |
Choi G H, Larson T G, Nuss D L. Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact, 1992, 5: 119-128.
doi: 10.1094/MPMI-5-119 |
[21] |
Zhu X, Gibbons J, Zhang S, Williamson P R. Copper-mediated reversal of defective laccase in a Δvph1 avirulent mutant of Cryptococcus neoformans. Mol Microbiol, 2003, 47: 1007-1014.
doi: 10.1046/j.1365-2958.2003.03340.x |
[22] | Anagnostakis S L. The Ecology and Physiology of the Fungal Mycelium. Cambridge: Cambridge University Press, 1984. pp 353-366. |
[23] |
Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol, 2018, 176: 1808-1823.
doi: 10.1104/pp.17.01628 |
[24] | Wei T P, Tang Y, Jia P, Zeng Y, Wang B, Wu P, Quan Y G, Chen A M, Li Y C, Wu J H. A cotton lignin biosynthesis gene, GhLAC4, fine-tuned by ghr-miR397 modulates plant resistance against Verticillium dahlia. Front Plant Sci, 2021, 18: 12. |
[25] |
Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966-2980.
doi: 10.1105/tpc.105.035154 |
[26] |
Turlapati P V, Kim K W, Davin L B, Lewis N G. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta, 2011, 233: 439-470.
doi: 10.1007/s00425-010-1298-3 |
[27] |
Niladevi K N, Sukumaran R K, Prema D. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. J Ind Microbiol Biotechnol, 2007, 34: 665-674.
doi: 10.1007/s10295-007-0239-z |
[28] |
Zhang R, Zhou L L, Li Y L, Ma H H, Li Y W, Ma Y Z, Lyu R J, Yang J, Wang W R, Alifu A, Zhang X L, Kong J, Min L. Rapid identification of pollen- and anther-specific genes in response to high-temperature stress based on transcriptome profiling analysis in cotton. Int J Mol Sci, 2022, 23: 3378.
doi: 10.3390/ijms23063378 |
[29] |
Min L, Zhu L F, Tu L L, Deng F L, Yuan D J, Zhang X L. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase. Plant J, 2013, 75: 823-835.
doi: 10.1111/tpj.2013.75.issue-5 |
[30] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[31] |
McCaig B C, Meagher R B, Dean J F D. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta, 2005, 221: 619-636.
doi: 10.1007/s00425-004-1472-6 |
[32] |
Dharmawardhana D P, Ellis B E, Carlson J E. Characterization of vascular lignification in Arabidopsis thaliana. Can J Bot, 1992, 70: 2238-2244.
doi: 10.1139/b92-277 |
[33] |
Naoumkina M A, Zhao Q, Gallego-Giraldo L, Dai X, Zhao P X, Dixon R A. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol, 2010, 11: 829-846.
doi: 10.1111/j.1364-3703.2010.00648.x pmid: 21029326 |
[34] |
Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield S D. Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol, 2016, 37: 190-200.
doi: 10.1016/j.copbio.2015.10.009 |
[35] |
Min L, Li Y Y, Hu Q, Zhu L F, Gao W H, Wu Y L, Ding Y H, Liu S M, Yang X Y, Zhang X L. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol, 2014, 164: 1293-1308.
doi: 10.1104/pp.113.232314 pmid: 24481135 |
[36] |
Ma Y Z, Min L, Wang M J, Wang C Z, Zhao Y L, Li Y Y, Fang Q D, Wu Y L, Xie S, Ding Y H, Su X J, Hu Q, Zhang Q H, Li X Y, Zhang X L. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell, 2018, 30: 1387-1403.
doi: 10.1105/tpc.18.00074 |
[37] |
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang Z Y, Dixon R A. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013, 25: 3976-3987.
doi: 10.1105/tpc.113.117770 |
[38] |
Balasubramanian V K, Rai K M, Thu S W, Hii M M, Mendu V. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.);expression and biochemical analysis during fiber development. Sci Rep, 2016, 6: 34309.
doi: 10.1038/srep34309 pmid: 27679939 |
[39] |
Johansson M, Denekamp M, Asiegbu F O. Production and isozyme pattern of extracellular laccase in the S and P intersterility groups of the root pathogen Heterobasidion annosum. Mycol Res, 1999, 103: 365-371.
doi: 10.1017/S0953756298007436 |
[40] |
Zhang Y, Wu L Z, Wang X F, Chen B, Zhao J, Cui J, Li Z K, Yang J, Wu G Y, Zhang G Y, Ma Z Y. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. Mol Plant Pathol, 2019, 20:309-322.
doi: 10.1111/mpp.12755 pmid: 30267563 |
[41] |
Torres J, Svistunenko D, Karlsson B, Cooper C E, Wilson M T. Fast reduction of a copper center in laccase by nitric oxide and formation of a peroxide intermediate. J Am Chem Soc, 2002, 124: 963-967.
pmid: 11829603 |
[42] | 靳蓉, 张飞龙. 漆酶的结构与催化反应机理. 中国生漆, 2012, 31(4): 6-16. |
Jin R, Zhang F L. Structure and catalytic mechanism of laccase. Chin Lacquer, 2012, 31(4): 6-16. (in Chinese with English abstract) | |
[43] |
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang Z Y, Dixon R A. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013, 25: 3976-3987.
doi: 10.1105/tpc.113.117770 |
[44] |
Lan W, Lu F, Regner M, Zhu Y, Rencoret J, Ralph S A, Zakai U I, Morreel K, Boerjan W, Ralph J. Tricin, a flavonoid monomer in monocot lignification. Plant Physiol, 2015, 167: 1284-1295.
doi: 10.1104/pp.114.253757 pmid: 25667313 |
[1] | 马春敏, 李维希, 李芳军, 田晓莉, 李召虎. 陆地棉硝酸盐转运体NRT基因家族鉴定及表达分析[J]. 作物学报, 2023, 49(6): 1496-1517. |
[2] | 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621. |
[3] | 朱继杰, 王士杰, 赵红霞, 贾晓昀, 李妙, 王国印. 田间条件下不同棉花品种叶片响应化学脱叶剂噻苯隆的转录组分析[J]. 作物学报, 2023, 49(10): 2705-2716. |
[4] | 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202. |
[5] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[6] | 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51. |
[7] | 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1a和GhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476. |
[8] | 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203. |
[9] | 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795. |
[10] | 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333. |
[11] | 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392. |
[12] | 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126. |
[13] | 朱国忠,张芳,付洁,李乐晨,牛二利,郭旺珍. 适于陆地棉品种身份鉴定的SNP核心位点筛选与评价[J]. 作物学报, 2018, 44(11): 1631-1639. |
[14] | 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244. |
[15] | 沈超,李定国,聂以春,林忠旭. 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL[J]. 作物学报, 2017, 43(12): 1733-1745. |
|