作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2362-2372.doi: 10.3724/SP.J.1006.2023.22062
HU Yan-Juan(), XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue()
摘要:
开花期(又叫抽穗期)影响水稻的产量、品质和地区适应性。在拟南芥中, Cycling DOF Factor 1 (CDF1)蛋白质是CONSTANS (CO)的转录抑制因子, 负向调节拟南芥的开花期。但是, 水稻中的同源蛋白OsCDF1的功能尚不完全清楚。为了揭示OsCDF1在水稻中的生物学功能及其对开花期的影响, 本研究利用CRISPR/Cas9基因编辑技术设计定向敲除水稻OsCDF1基因的2个靶位点, 构建OsCDF1基因的敲除载体; 通过农杆菌介导的方法分别转化北方粳稻品种沈农9816, 创制OsCDF1基因的突变体; 分析沈农9816和oscdf1突变体在田间种植下的开花期和产量性状的差异。主要研究结果为: 创制了在第1个外显子的第16 bp处缺失5个碱基和在第2个外显子的338 bp处单碱基A插入的oscdf1纯合突变。序列比对分析表明, 这2种类型的突变均造成移码和蛋白翻译提前终止。在自然长日照条件下, oscdf1突变体的开花期比野生型沈农9816晚4 d以上, 其产量高于野生型。对OsCDF1单倍型和单倍型网络分析发现, OsCDF1在不同品种中进化出高度多样性。本研究成功利用CRISPR/Cas9基因编辑技术敲除了水稻OsCDF1基因, 为进一步研究OsCDF1基因功能提供了理论参考, 也为水稻遗传改良提供了潜在的基因和种质资源。
[1] |
徐春春, 纪龙, 陈中督, 方福平. 2021年我国水稻产业形势分析及2022年展望. 中国稻米, 2022, 28(2): 16-19.
doi: 10.3969/j.issn.1006-8082.2022.02.003 |
Xu C C, Ji L, Chen Z D, Fang F P. Situation analysis of China’s rice industry in 2021 and its outlook in 2022. China Rice, 2022, 28(2):16-19. (in Chinese) | |
[2] | 万建民. 中国水稻分子育种现状与展望. 中国农业科技导报, 2007, (2): 1-9. |
Wan J M. Current situation and prospect of rice molecular breeding in China. China Agric Sci Technol Rev, 2007, (2): 1-9. (in Chinese with English abstract) | |
[3] |
张海淼, 李洋, 刘海峰, 孔令广, 丁新华. 水稻重要农艺性状调控基因及其育种利用研究进展. 生物技术通报, 2020, 36(12): 155-169.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0537 |
Zhang H M, Li Y, Liu H F, Kong L G, Ding X H. Research progress on regulatory genes of important agronomic traits and breeding utilization in rice. Biotech Bull, 2020, 36(12): 155-169. (in Chinese with English abstract) | |
[4] | 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019, 49: 1185-1212. |
Guo T, Yu H, Qiu J, Li J Y, Han B, Lin H X. Advances in rice genetics and breeding by molecular design in China. Sci China- Life Sci, 2019, 49: 1185-1212. (in Chinese with English abstract) | |
[5] |
Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev, 2002, 16: 2006-2020.
doi: 10.1101/gad.999202 |
[6] | Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 2002, 14: 111-130. |
[7] |
Yanovsky M J, Kay S A. Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002, 419: 308-312.
doi: 10.1038/nature00996 |
[8] |
Ryosuke H, Shuji Y, Shojiro T, Masahiro Y, Ko S. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003, 422: 719-722
doi: 10.1038/nature01549 |
[9] |
Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962-1965.
doi: 10.1126/science.286.5446.1962 pmid: 10583961 |
[10] |
Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science, 1999, 286: 1960-1962.
doi: 10.1126/science.286.5446.1960 pmid: 10583960 |
[11] |
Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000, 288: 1613-1616.
doi: 10.1126/science.288.5471.1613 pmid: 10834834 |
[12] |
Robson F, Costa M M, Hepworth S R, Vizir I, Piñeiro M, Reeves P H, Putterill J, Coupland G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J Cell Mol Biol, 2001, 28: 619-631.
doi: 10.1046/j.1365-313x.2001.01163.x |
[13] |
Yasushi K, Detlef W. Move on up, it’s time for change: mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007, 21: 2371-2384.
doi: 10.1101/gad.1589007 |
[14] |
Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1 F-Box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293-297.
doi: 10.1126/science.1110586 pmid: 16002617 |
[15] |
Sawa M, Nusinow D A, Kay S A, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 2007, 318: 261-265.
doi: 10.1126/science.1146994 |
[16] |
Fornara F, Panigrahi K C S, Gissot L, Sauerbrunn N, Rühl M, Jarillo J A, Coupland G. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell, 2009, 17: 75-86.
doi: 10.1016/j.devcel.2009.06.015 pmid: 19619493 |
[17] |
Goralogia G S, Liu T K, Zhao L, Panipinto P M, Groover E D, Bains Y S, Imaizumi T. CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis. Plant J, 2017, 92: 244-262.
doi: 10.1111/tpj.2017.92.issue-2 |
[18] |
Imaizumi T, Schultz T F, Harmon F G, Ho L A, Kay S A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309: 293-297.
doi: 10.1126/science.1110586 pmid: 16002617 |
[19] |
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484.
doi: 10.1105/tpc.12.12.2473 pmid: 11148291 |
[20] |
Izawa T, Takahashi Y, Yano M. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opinion Plant Biol, 2003, 6: 113-120.
doi: 10.1016/S1369-5266(03)00014-1 |
[21] |
Kazuyuki D, Takeshi I, Takuichi F, Utako Y, Takahiko K, Zenpei S, Masahiro Y, Atsushi Y. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926-936.
doi: 10.1101/gad.1189604 |
[22] |
Li D J, Yang C H, Li X B, Gan Q, Zhao X F, Zhu L H. Functional characterization of rice OsDof12. Planta, 2009, 229: 1159-1169.
doi: 10.1007/s00425-009-0893-7 |
[23] | Wu Q, Li D Y, Li D J, Liu X, Zhao X F, Li X B, Li S G, Zhu L H. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.). Front Plant Sci, 2015, 6: 833. |
[24] | 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37: 953-973. |
Dan Q W, Gao C X. Research progress of genome editing and derivative technologies in plants. Hereditas, 2015, 37: 953-973. (in Chinese with English abstract) | |
[25] |
Xie K B, Minkenberg B, Yang Y N: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 2015, 112: 3570-3575.
doi: 10.1073/pnas.1420294112 pmid: 25733849 |
[26] |
Li D, Xu H, Sun X X, Cui Z B, Zhang Y, Bai Y G, Wang X X, Chen W F. Differential transformation efficiency of japonica rice varieties developed in northern China. Crop Breed Appl Biotechnol, 2015, 15: 162-168.
doi: 10.1590/1984-70332015v15n3a28 |
[27] |
Zhu M, Hu Y J, Tong A Z, Yan B W, Lyu Y P, Wang S Y, Ma W H, Cui Z B, Wang X X. LAZY1 controls tiller angle and shoot gravitropism by regulating the expression of auxin transporters and signaling factors in rice. Plant Cell Physiol, 2021, 61: 2111-2125.
doi: 10.1093/pcp/pcaa131 pmid: 33067639 |
[28] | 孔冬艳, 陈会广. 近40年来中国农作物与耕地受灾时空特征及影响因素分析. 长江流域资源与环境, 2020, 29: 1236-1246. |
Kong D Y, Chen H G. Spatial-temporal characteristics and influencing factors of agricultural crop and cultivated land disaster in China in recent 40 years. Res Environ Yangtze Basin, 2020, 29: 1236-1246. (in Chinese) | |
[29] |
Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-951.
doi: 10.1038/nbt.2969 pmid: 25038773 |
[30] | Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. Enhanced rice blast resistance by CRISPR/Cas9- targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 2016, 11: e0154027. |
[31] |
Wang Y X, Liu X Q, Zheng X X, Wang W X, Yin X Q, Liu H F, Ma C L, Niu X M, Zhu J K, Wang F. Creation of aromatic maize by CRISPR/Cas. J Integr Plant Biol, 2021, 63: 1664-1670.
doi: 10.1111/jipb.13105 |
[32] |
侯智红, 吴艳, 程群, 董利东, 芦思佳, 南海洋, 甘卓然, 刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系. 作物学报, 2019, 45: 839-847.
doi: 10.3724/SP.J.1006.2019.84157 |
Hou Z H, Wu Y, Cheng Q, Dong L D, Lu S J, Nan H Y, Gan Z R, Liu B H. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agron Sin, 2019, 45: 839-847. (in Chinese with English abstract) | |
[33] |
张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究. 作物学报, 2021, 47: 1481-1490.
doi: 10.3724/SP.J.1006.2021.04214 |
Zhang W, Xian J L, Sun C, Wang C M, Shi L, Yu W C. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/ Cas9. Acta Agron Sin, 2021, 47: 1481-1490. (in Chinese with English abstract) | |
[34] |
Zhang J H, Zhang H T, Li S Y, Li J Y, Yan L, Xia L Q. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J Integr Plant Biol, 2021, 63: 1649-1663.
doi: 10.1111/jipb.v63.9 |
[35] |
Fu Y F, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31: 822-826.
doi: 10.1038/nbt.2623 pmid: 23792628 |
[36] |
Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among Eukaryotes. Science, 2000, 290: 2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137 |
[37] |
Shuichi Y. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol, 2004, 45: 386-391.
doi: 10.1093/pcp/pch055 pmid: 15111712 |
[38] |
Shigyo M, Tabei N, Yoneyama T, Yanagisawa S. Evolutionary processes during the formation of the plant-specific Dof transcription factor family. Plant Cell Physiol, 2007, 48: 179-185.
pmid: 17132629 |
[1] | 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571. |
[2] | 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411. |
[3] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[4] | 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038. |
[5] | 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050. |
[6] | 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159. |
[7] | 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295. |
[8] | 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941. |
[9] | 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746. |
[10] | 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707. |
[11] | 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479. |
[12] | 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698. |
[13] | 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338. |
[14] | 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349. |
[15] | 戴文慧, 朱琪, 张小芳, 吕沈阳, 项显波, 马涛, 陈宇杰, 朱世华, 丁沃娜. 一个水稻脆秆突变体bc21的鉴定和基因定位[J]. 作物学报, 2023, 49(5): 1426-1431. |
|