欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2373-2384.doi: 10.3724/SP.J.1006.2023.24242

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

盐胁迫对花生幼苗离子动态及耐盐基因表达的影响

徐扬1(), 张岱2, 康涛3, 温赛群4, 张冠初1, 丁红1, 郭庆1, 秦斐斐1, 戴良香1,*(), 张智猛1,*()   

  1. 1山东省花生研究所, 山东青岛 266100
    2河北农业大学植保学院, 河北保定 071001
    3泰安市农业科学院, 山东泰安 271001
    4河北省农林科学院, 河北石家庄 050050
  • 收稿日期:2022-10-28 接受日期:2023-02-21 出版日期:2023-09-12 网络出版日期:2023-03-15
  • 通讯作者: *张智猛, E-mail: qinhdao@126.com; 戴良香, E-mail: liangxiangd@163.com
  • 作者简介:徐扬, E-mail: xy52120092661@163.com
  • 基金资助:
    国家自然科学基金项目(31971856);国家自然科学基金项目(31901574);国家自然科学基金项目(31971854);山东省现代农业产业技术体系项目(SDAIT-04-06)

Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings

XU Yang1(), ZHANG Dai2, KANG Tao3, WEN Sai-Qun4, ZHANG Guan-Chu1, DING Hong1, GUO Qing1, QIN Fei-Fei1, DAI Liang-Xiang1,*(), ZHANG Zhi-Meng1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
    3Tai’an Academy of Agricultural Sciences, Tai’an 271001, Shandong, China
    4Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, Hebei, China
  • Received:2022-10-28 Accepted:2023-02-21 Published:2023-09-12 Published online:2023-03-15
  • Supported by:
    National Natural Science Foundation of China(31971856);National Natural Science Foundation of China(31901574);National Natural Science Foundation of China(31971854);Modern Agricultural Industry Technical System of Shandong Province(SDAIT-04-06)

摘要:

不同花生品种的耐盐能力各有差异, 本研究以耐盐花生品种花育25 (Huayu 25, HY25)和盐敏感品种花育20 (Huayu 20, HY20)为材料, 利用非损伤微测技术, 测定盐胁迫下花生幼苗根尖中Na+、K+、Ca2+、NH4+、NO3-、Cl-的流速; 并同期检测了幼苗的生长性状、主要耐盐基因的表达及渗透调节物质(可溶性糖、脯氨酸)含量的变化, 以明确花生的耐盐能力与离子吸收、转运及抗逆调控的关系。结果表明: (1) 盐胁迫下Na+内流减弱, 外排速率增加, K+内流提高, 但是相对而言, HY25的Na+外排速率及K+内流速率均高于HY20, 表明HY25通过排Na+保K+提高耐盐性; (2) 盐胁迫促进Ca2+迅速内流, 并且耐盐品种比盐敏感品种Ca2+内流速率更高, 可能与耐盐有关; (3) 盐胁迫导致两品种NO3-外排, 但耐盐品种HY25的外排流速更低, 表明HY25可通过减缓NO3-的流失以抵御盐胁迫的危害; (4) 盐胁迫促使耐盐品种HY25 Cl-外排, 但盐敏感品种Cl-的内流速率提高, 表明HY25可通过加快Cl-的外排减轻Cl-的毒害; (5) 盐胁迫显著诱导耐盐品种HY25耐盐相关基因AhNHX1AhHA1AhSAMDC1AhLeaD的表达, 可帮助其提高盐耐受性。综上, HY25的高耐盐能力与较强的离子稳态和较高的耐盐基因表达量密切相关。明确盐胁迫下花生根系的离子流动规律和抗逆机制, 将为改善盐碱地花生出苗、立苗、健苗及其调控技术的建立提供理论支撑。

关键词: 花生, 盐胁迫, 动态离子流, 耐盐基因, 非损伤微测技术

Abstract:

Different peanut varieties have different salt tolerance. In this study, to determine the flow rates of ions Na+, K+, Ca2+, NH4+, NO3-, and Cl- in root tips of peanut seedlings under salt stress via Non-invasive Micro-test technique, a salt-tolerant peanut variety Huayu 25 (HY25) and a salt-sensitive variety Huayu 20 (HY20) were used as the experimental materials. The growth traits, the relative expression level of major salt tolerance genes, and the contents of osmotic regulatory substances (soluble sugar and proline) were also measured to establish the difference of ion absorption and stress resistance regulation in different varieties. The results showed as follows: (1) Under NaCl stress, Na+ influx was inhibited, and its efflux increased, but promoted the influx of K+. The efflux rate of Na+ and influx rate of K+ in HY25 were higher than HY20, which may improve salinity tolerance by preserving K+ and discharging Na+. (2) Salt stress promoted Ca2+ influx, and the Ca2+ influx rate of salt-tolerant varieties was higher than the salt-sensitive varieties, which might be related to salt tolerance. (3) NO3- exhibited efflux in both varieties under salt stress, but the efflux rate of the salt-tolerant variety HY25 was lower, indicating that HY25 could resist the harm of salt stress by slowing the loss of NO3-. (4) Salt stress induced Cl- efflux in HY25 but influx in salt-sensitive variety, indicating that HY25 could reduce the toxicity of Cl- by accelerating the efflux of Cl-. (5) Salt stress significantly up-regulated the relative expression level of salt-tolerant genes AhNHX1, AhHA1, AhSAMDC1, and AhLeaD in salt-tolerant variety HY25, which could help improve its salt tolerance. Clarifying the dynamic changes of root ion flow and resistance mechanism under salt stress can provide the theoretical support for improving the emergence, establishment, and development of peanut seedlings in saline-alkali land and the establishment of regulation technology.

Key words: peanut, salt stress, dynamic ion, salt tolerance genes, non-invasive micro-test technique (NMT)

图1

盐胁迫对根尖Na+瞬时流速和平均流速的影响 A: 盐胁迫和正常条件下的根尖Na+瞬时动态变化; B: NMT测定10 min时Na+平均流速。HY20CK: 对照条件下培养的HY20幼苗; HY20S: 150 mmol L-1 NaCl下培养的HY20幼苗; HY25CK: 对照条件下培养的HY25幼苗; HY25S: 150 mmol L-1 NaCl下培养的HY25幼苗。"

图2

盐胁迫对根尖K+瞬时流速和平均流速的影响 A: 盐胁迫和正常条件下根尖K+瞬时动态变化; B: NMT测定10 min时根尖K+平均流速。缩写同图1。"

图3

盐胁迫对根尖Ca2+瞬时流速和平均流速的影响 A: 盐胁迫和正常条件下的根尖Ca2+瞬时动态变化; B: NMT测定10 min时根尖Ca2+平均流速。缩写同图1。"

图4

盐胁迫对根尖NH4+瞬时流速和平均流速的影响 A: 盐胁迫和正常条件下的根尖NH4+瞬时动态变化; B: NMT测定10 min时NH4+平均流速。缩写同图1。"

图5

盐胁迫对根尖NO3-瞬时流速和平均流速的影响 A: 盐胁迫和正常条件下的根尖NO3-瞬时动态变化; B: NMT测定10 min时NO3-平均流速。缩写同图1。"

图6

盐胁迫对根尖Cl-瞬时流速和平均流速的影响 A: 盐胁迫和正常条件下的根尖Cl-瞬时动态变化; B: NMT测定10 min时Cl-平均流速。缩写同图1。"

表1

各离子与Na+平均速率间平衡关系"

K+/Na+ Ca2+/Na+ NH4+/Na+ NO3-/Na+ Cl-/Na+
HY20CK -0.00845 0.0115 0.0134 0.00119 -0.0107
HY20S 1.369 0.139 -0.0276 -0.0362 0.329
HY25CK -0.683 0.0312 -0.0364 -0.00737 0.0307
HY25S -6.108 -0.527 -0.254 0.0400 0.387

图7

盐胁迫处理前后耐盐基因表达量检测 HY25: 花育25; HY20: 花育20。统计学差异用小写字母表示, 不同字母表示处理间差异显著(P < 0.05)。"

图8

盐胁迫处理前后的脯氨酸和可溶性糖含量测定 HY25: 花育25; HY20: 花育20。统计学差异用小写字母表示, 不同字母表示处理间差异显著(P < 0.05)。"

表2

盐胁迫对不同花生品种幼苗生长的影响"

品种
Variety name
处理
Treatment
主根长
Primary root length
主茎高
Main shoot height
每株地下干重Underground dry weight per plant (g) 每株地上干重
Aboveground dry weight per plant (g)
根冠比
Root/shoot ratio
花育25
Huayu 25
CK 4.450±0.308 a 19.320±1.071 a 0.240±0.0163 a 1.640±0.0829 a 0.146±0.00303 a
150 mmol L-1 NaCl 2.553±0.244 b 12.470±0.474 b 0.130±0.00816 c 1.107±0.0946 c 0.119±0.00347 c
花育20
Huayu 20
CK 4.997±0.418 a 12.380±0.849 b 0.210±0.00817 b 1.433±0.184 b 0.148±0.0138 a
150 mmol L-1 NaCl 1.920±0.153 c 7.867±0.818 c 0.113±0.0125 d 0.820±0.0993 d 0.139±0.00984 b
[1] Jafar M Z, Faroo Q M, Cheema M A, Afzal I, Basra S M A, Wahid M A, Aziz T, Shahid M. Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci, 2012, 198: 38-45.
doi: 10.1111/jac.2011.198.issue-1
[2] 杨帆, 魏晓岑, 张士超, 王宝山. 不同甜高粱品种萌发期抗盐和抗旱性比较. 植物生理学报, 2015, 51: 1604-1610.
Yang F, Wei X C, Zhang S C, Wang B S. Comparison on salt and drought resistances of different varieties of Sorghum bicolor at germination stage. Plant Physiol J, 2015, 51: 1604-1610. (in Chinese with English abstract)
[3] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[4] 吴兰荣, 陈静, 许婷婷, 苗华荣, 胡文广, 禹山林. 花生全生育期耐盐鉴定研究. 花生学报, 2005, 34(1): 20-24.
Wu L R, Chen J, Xu T T, Miao H R, Hu W G, Yu S L. Identification of salt tolerance in peanut growth duration. J Peanut Sci, 2005, 34(1): 20-24. (in Chinese with English abstract)
[5] 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征. 植物生态学报, 2016, 40: 69-79.
doi: 10.17521/cjpe.2015.0240
Guo R, Li F, Zhou J, Li H R, Xia X, Liu Q. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses. Chin J Plant Ecol, 2016, 40: 69-79. (in Chinese with English abstract)
doi: 10.17521/cjpe.2015.0240
[6] 慈敦伟, 张智猛, 丁红, 宋文武, 符方平, 康涛, 戴良香. 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015, 35: 805-814.
Ci D W, Zhang Z M, Ding H, Song W W, Fu F P, Kang T, Dai L X. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015, 35: 805-814. (in Chinese with English abstract)
[7] 温赛群, 袁光, 张智猛, 张冠初, 慈敦伟, 丁红, 徐扬, 姜常松, 戴良香. 花生品种苗期耐盐性评价与筛选. 农学学报, 2021, 11: 29-35.
doi: 10.11923/j.issn.2095-4050.cjas20190900190
Wen S Q, Yuan G, Zhang Z M, Zhang G C, Ci D W, Ding H, Xu Y, Jiang C S, Dai L X. Salt tolerance of peanut varieties at seedling stage: assessment and screening. J Agric, 2021, 11: 29-35. (in Chinese with English abstract)
doi: 10.11923/j.issn.2095-4050.cjas20190900190
[8] 史晓龙, 张智猛, 戴良香, 张冠初, 田家明, 丁红, 慈敦伟, 温赛群. 施钙对盐胁迫下花生荚果发育动态的影响. 中国农学通报, 2019, 35(20): 6-12.
doi: 10.11924/j.issn.1000-6850.casb18080120
Shi X L, Zhang Z M, Dai L X, Zhang G C, Tian J M, Ding H, Ci D W, Wen S Q. Calcium fertilizer affects the development of peanut pod under salt stress. Chin Agric Sci Bull, 2019, 35(20): 6-12. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb18080120
[9] 史晓龙, 张智猛, 戴良香, 张冠初, 慈敦伟, 丁红, 田家明. 外源施钙对盐胁迫下花生营养元素吸收与分配的影响. 应用生态学报, 2018, 29: 3302-3310.
doi: 10.13287/j.1001-9332.201810.026
Shi X L, Zhang Z M, Dai L X, Zhang G C, Ci D W, Ding H, Tian J M. Effects of calcium fertilizer application on absorption and distribution of nutrients in peanut under salt stress. Chin J Appl Ecol, 2018, 29: 3302-3310. (in Chinese with English abstract)
[10] 温赛群, 丁红, 徐扬, 张冠初, 张智猛, 戴良香. 不同花生品种对NaCl胁迫生理响应特征. 西北植物学报, 2021, 41: 1535-1544.
Wen S Q, Ding H, Xu Y, Zhang G C, Zhang Z M, Dai L X. Physiological response characteristics of peanut varieties with different salt resistance under NaCl stress. Acta Bot Boreali- Occident Sin, 2021, 41: 1535-1544 (in Chinese with English abstract).
[11] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应. 作物学报, 2021, 47: 1581-1592.
doi: 10.3724/SP.J.1006.2021.04160
Dai L X, Xu Y, Zhang G C, Shi X L, Qin F F, Ding H, Zhang Z M. Response of rhizosphere bacterial community diversity to salt stress in peanut. Acta Agron Sin, 2021, 47: 1581-1592. (in Chinese with English abstract)
[12] 刘容秀, 崔金腾, 张克中. NaCl 胁迫对‘Robina’百合叶片和根部抗氧化酶系统及根尖离子流速的影响. 北京农学院学报, 2020, 35(2): 77-83.
Liu R X, Cui J T, Zhang K Z. Effects of NaCl stress on the antioxidant enzyme system in leaves and roots and ion flux in root tip of Lilium ‘Robina’. J Beijing Univ Agric, 2020, 35(2): 77-83. (in Chinese with English abstract)
[13] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响. 作物学报. 2022, 48: 1771-1786.
doi: 10.3724/SP.J.1006.2022.11057
Liu A K, Ma R Q, Wang D M, Wang Y J, Yang Y S, Zhao G C, Chang X H. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter. Acta Agron Sin, 2022, 48: 1771-1786. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11057
[14] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用. 作物学报, 2022, 48: 2016-2027.
doi: 10.3724/SP.J.1006.2022.12041
Zhu C Q, Wei Q Q, Xiang X J, Hu W J, Xu Q S, Cao X C, Zhu L F, Kong Y L, Liu J, Jin Q Y, Zhang J H. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice. Acta Agron Sin, 2022, 48: 2016-2027. (in Chinese with English abstract)
[15] 赵楠. 胞外ATP调控不同耐盐性杨树K+/Na+离子平衡的信号网络研究. 北京林业大学博士学位论文, 北京, 2017.
Zhao N. The Role of Extracellular ATP-Mediated Salt Signaling in the Regulation of K+/Na+ Homeostasis in Two Poplars with Contrasting Salt Tolerance. PhD Dissertation of Beijing Forestry University, Beijing, China, 2017. (in Chinese with English abstract)
[16] 朱志明, 毛桂莲, 许兴, 王盛, 郑蕊, 杨淑娟. 盐胁迫下宁夏枸杞根系Na+、K+平衡及抑制剂对其影响的研究. 干旱地区农业研究, 2017, 35(6): 140-145.
Zhu Z M, Mao G L, Xu X, Wang S, Zheng R, Yang S J. Effect of salt stress and inhibitor on uptake and transportation of Na+ and K+ in the root of Ningxia Lycium barbarum L. Agric Res Arid Areas, 2017, 35(6): 140-145. (in Chinese with English abstract)
[17] 刘晴晴. 不同生境盐地碱蓬根系拒盐机制研究. 山东师范大学硕士学位论文, 山东济南, 2018.
Lui Q Q. Study on the Mechanism of Salt Exclusion in the Roots of Suaeda salsa in Different Habitats. MS Thesis of Shandong Normal University, Jinan, Shandong, China, 2018. (in Chinese with English abstract)
[18] Feng S, Sun H W, Ma H P, Zhang X, Ma S R, Qiao K, Zhou A M, Bu Y Y, Liu S K. Sexual differences in physiological and transcriptional responses to salinity stress of Salix linearistipularis. Front Plant Sci, 2020, 11: 517962.
doi: 10.3389/fpls.2020.517962
[19] 付晴晴. ‘左山一’杂交砧木株系耐盐评价及钠离子吸收分配特征研究. 山东农业大学硕士学位论文, 山东泰安, 2018.
Fu Q Q. Salt tolerance Evaluation and Na+Absorption and Distribution Characteristics of Hybrid Roots Tocks from ‘Zuo Shan 1’. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018. (in Chinese with English abstract)
[20] 邢磊, 王文磊, 徐燕, 纪德华, 许凯, 陈昌生, 谢潮添. 低盐胁迫对坛紫菜(Pyropia haitanensis)离子转运的影响. 集美大学学报(自然科学版), 2021, 26(1): 1-7.
Xing L, Wang W L, Xu Y, Ji D H, Xu K, Chen C S, Xie C T. Effects of low salt stress on ion transport in Pyropia haitanensis. J Jimei Univ (Nat Sci), 2021, 26(1): 1-7. (in Chinese with English abstract)
[21] 李丹, 黄绢, 张伟溪, 丁昌俊, 苏晓华, 黄秦军. 盐胁迫条件下转多基因库安托杨根尖离子流变化. 林业科学, 2015, 51(9): 35-41.
Li D, Huang J, Zhang W X, Ding C J, Su X H, Huang Q J. Ion fluxes of multiple transgenic Populus × euramericana ‘Guariento’ under salt stress. Sci Silvae Sin, 2015, 51(9): 35-41. (in Chinese with English abstract)
[22] 董彬彬. 盐胁迫对钝顶螺旋藻生长、离子响应及代谢产物的影响研究. 南京农业大学硕士学位论文, 江苏南京, 2019.
Dong B B. Effects of Salt Stress on Growth, Ion Response and Metabolites of Spirulina platensis. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019. (in Chinese with English abstract)
[23] Chen Z, Pottosin I I, Cuin T A, Fuglsang A T, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren M G, Newman I A, Shabala S. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol, 2007, 145: 1714-1725.
doi: 10.1104/pp.107.110262
[24] Cuin T A, Betts S A, Chalmandrier R, Shabala S. A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot, 2008, 59: 2697-2706.
doi: 10.1093/jxb/ern128
[25] Yu Y C, Xu T, Li X, Tang J, Ma D F, Li Z Y, Sun J. NaCl-induced changes of ion homeostasis and nitrogen metabolism in two sweet potato (Ipomoea batatas L.)cultivars exhibit different salt tolerance at adventitious root stage. Environ Exp Bot, 2016, 129: 23-36.
doi: 10.1016/j.envexpbot.2015.12.006
[26] Tang Z H, Liu Y J, Guo X R, Zu Y G. The combined effects of salinity and nitrogen forms on Catharanthus roseus: the role of internal ammonium and free amino acids during salt stress. J Plant Nutr Soil Sci, 2011, 174: 135-144.
doi: 10.1002/jpln.v174.1
[27] Kant S, Kant P, Lips H, Barak S. Partial substitution of NO3- by NH4+ fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley. J Plant Physiol, 2007, 164: 303-311.
doi: 10.1016/j.jplph.2005.12.011
[28] Hessini K, Ghandour M, Albouchi A, Soitani A, Werner K H, Abdelly C. Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress. J Plant Res, 2008, 121: 311-318.
doi: 10.1007/s10265-008-0151-2 pmid: 18389173
[29] Miranda R D S, Mesquita R O, Costa J H, Alvarez-Pizarro J C, Prisco J T, Gomes-Filho E. Integrative control between proton pumps and SOS1 antiporters in roots is crucial for maintaining low Na+accumulation and salt tolerance in ammonium-supplied Sorghum bicolor. Plant Cell Physiol, 2017, 58: 522-536.
doi: 10.1093/pcp/pcw231 pmid: 28158828
[30] Ehlting B, Dluzniewska P, Dietrich H, Selle A, Teuber M, Ha¨nsch R, Nehls U, Polle A, Schnitzler J P, Rennenberg H, Gessler A. Interaction of nitrogen nutrition and salinity in grey poplar (Populus tremulaalba). Plant Cell Environ, 2007, 30: 796-811.
doi: 10.1111/j.1365-3040.2007.01668.x pmid: 17547652
[31] Sagi M, Dovrat A, Kipnis T, Lips H. Ionic balance, biomass production, and organic nitrogen as affected by salinity and nitrogen source in annual ryegrass. J Plant Nutr, 1997, 20: 1291-1316.
doi: 10.1080/01904169709365336
[32] Aslam M, Huffaker R C, Rains D W. Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol, 1984, 76: 321-325.
doi: 10.1104/pp.76.2.321 pmid: 16663840
[33] 龚明, 赵方杰, 吴颂如, 汪良驹, 刘友亮. NaCl胁迫对大麦硝酸盐吸收和有关的酶活的影响. 植物生理学通讯, 1990, (2): 13-16.
Gong M, Zhao F J, Wu S R, Wang L J, Lui Y L. Influences of NaCl stress on nitrate uptake and related enzyme activities of barley seedings. Plant Physiol Biochem, 1990, (2): 13-16. (in Chinese with English abstract)
[34] Tavakkoli E, Fatehi F, Coventry S. Pichu Rengasamy P, McDonald G K. Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J Exp Bot, 2011, 62: 2189-2203.
doi: 10.1093/jxb/erq422 pmid: 21273334
[35] 高奔, 宋杰, 刘金萍, 隋娜, 范海, 王宝山. 盐胁迫对不同生境盐地碱蓬光合及离子积累的影响. 植物生态学报, 2010, 34: 671-677.
doi: 10.3773/j.issn.1005-264x.2010.06.006
Gao B, Song J, Liu J P, Sui N, Fan H, Wang B S. Effects of salt stress on photosynthesis and ion accumulation patterns of Suaeda salsa under different habitats. Chin J Plant Ecol, 2010, 34: 671-677. (in Chinese with English abstract)
[36] Aslam M, Huffaker R C, William R D. Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol, 1984, 76: 321-325.
doi: 10.1104/pp.76.2.321 pmid: 16663840
[37] Apse M P, Aharon G S, Snedden W A, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 285: 1256-1258.
doi: 10.1126/science.285.5431.1256 pmid: 10455050
[38] 孔伟伟. 花生质膜H+-ATPase基因AhHA1在盐胁迫响应中的功能研究. 山东师范大学硕士学位论文, 山东济南, 2020.
[41] Yin X Y, Yang A F, Zhang K W, Zhang J R. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin, 2004, 46: 854-861.
[42] Fan Y, Wan S, Jiang Y, Xia Y Q, Chen X H, Gao M Z, Cao Y X, Luo Y H, Zhou Y, Jiang X Y. Over-expression of a plasma membrane H+-ATPase Sp AHA1 conferred salt tolerance to transgenic Arabidopsis. Protoplasma, 2018, 255: 1827-1837.
doi: 10.1007/s00709-018-1275-4
[43] Roy M, Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci, 2002, 163: 987-992.
doi: 10.1016/S0168-9452(02)00272-8
[44] 姜平平, 潘雷雷, 黄建斌, 纪红昌, 唐艳艳, 于明洋, 朱虹, 隋炯明, 王晶珊, 乔利仙. 花生AhLea-D基因的克隆及耐盐性验证. 农业生物技术学报. 2020, 28: 811-822.
Jiang P P, Pan L L, Huang J B, Ji H C, Tang Y Y, Yu M Y, Zhu H, Sui J M, Wang J S, Qiao L X. Cloning and salt tolerance validation of AhLea-D gene in peanut (Arachis hypogaea). J Agric Biotechnol, 2020, 28: 811-822. (in Chinese with English abstract)
[38] Kong W W. Role of Peanut Plasma Membrane H+-ATPase Gene AhHA1 in Salt Stress Response. MS Thesis of Shandong Normal University, Jinan, Shandong, China, 2020. (in Chinese with English abstract)
[39] Mellidou I, Moschou P N, Ioannidis N E, Pankou C, Gemes K, Valassakis C, Andronis E A, Beris D, Haralampidis K, Roussis A, Karamanoli A, Matsi T, Kotzabasis K, Constantinidou H I, Roubelakis-Angelakis K A. Silencing S-Adenosyl-L-Methionine Decarboxylase (SAMDC) in Nicotiana tabacum points at a polyamine-dependent trade-off between growth and tolerance responses. Front Plant Sci, 2016, 7: 379.
[40] Koubaa S, Brini F. Functional analysis of a wheat group 3 late embryogenesis abundant protein (TdLEA3) in Arabidopsis thaliana under abiotic and biotic stresses. Plant Physiol Biochem, 2020, 156: 396-406.
doi: 10.1016/j.plaphy.2020.09.028
[1] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[2] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[3] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[4] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[5] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[6] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[7] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[8] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[9] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876.
[10] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[11] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
[12] 郭建斌, 成良强, 李威涛, 刘念, 罗怀勇, 丁膺宾, 喻博伦, 陈伟刚, 黄莉, 周小静, 雷永, 廖伯寿, 姜慧芳. 花生蔗糖含量与蛋白质和含油量的相关性分析及蔗糖含量QTL定位[J]. 作物学报, 2023, 49(10): 2698-2704.
[13] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[14] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[15] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .