欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2594-2600.doi: 10.3724/SP.J.1006.2023.24225

• 研究简报 • 上一篇    

木薯蛋白激酶MeSnRK2.12与转录因子MebHLH1的互作鉴定及其表达分析

郁雪婷1(), 李可2, 李梦桃1, 鲍茹雪1, 陈新3,*(), 王文泉1   

  1. 1海南大学热带作物学院, 海南海口, 570228
    2海南大学生命科学学院, 海南海口 570228
    3中国热带农业科学院热带生物技术研究所 / 海南热带农业资源研究院海南省热带农业生物资源保护与利用重点实验室, 海南海口 571101
  • 收稿日期:2022-10-10 接受日期:2023-02-14 出版日期:2023-09-12 网络出版日期:2023-02-28
  • 通讯作者: *陈新, E-mail: chenxin@itbb.org.cn
  • 作者简介:郁雪婷, E-mail: yuxueting_2019@sina.com
  • 基金资助:
    国家重点研发计划项目(2018YFD1000500);国家自然科学基金项目(31861143005);海南省高校研究生创新科研课题(Hyb2019-10)

Interaction identification between protein kinase MeSnRK2.12 and transcription factor MebHLH1 and its relative expression level in cassava

YU Xue-Ting1(), LI Ke2, LI Meng-Tao1, BAO Ru-Xue1, CHEN Xin3,*(), WANG Wen-Quan1   

  1. 1College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China
    2School of Life Sciences, Hainan University, Haikou 570228, Hainan, China
    3Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences / Hainan Key Laboratory of Conservation and Utilization of Tropical Agricultural Biological Resources, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, Hainan, China
  • Received:2022-10-10 Accepted:2023-02-14 Published:2023-09-12 Published online:2023-02-28
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000500);National Natural Science Foundation of China(31861143005);Innovative Research Projects for Graduate Students of Hainan Province(Hyb2019-10)

摘要:

蛋白激酶SnRK2s (Sucrose Non-fermenting Related Protein Kinase 2)是植物抗逆境机制中的关键组分。木薯是全球重要的食品和工业作物, 具有高淀粉累积和耐逆境的特点。迄今对木薯MeSnRK2家族成员参与逆境下淀粉合成调控的内在机制尚不清楚。本文围绕SnRK2家族受ABA微弱诱导的成员MeSnRK2.12展开研究, 先对其进行生物信息学分析后发现其启动子区分布逆境响应元件: 干旱胁迫MBS和ABA应答ABRE等顺式作用元件, 且其氨基酸序列与AtSnRK2.8和OsSAPK1/2高度同源。ABA和PEG6000处理木薯SC8植株后发现, MeSnRK2.12可以在2 h内快速响应ABA和PEG6000处理, 其转录活性在根中被抑制; 在茎中被诱导上调, 最高值分别为对照的15.0倍和8.0倍; 在叶中也呈现上调趋势, 但程度低于茎中。亚细胞定位试验结果显示MeSnRK2.12分布于细胞质和细胞核, 利用酵母双杂交和双分子荧光互补(BiFC)试验均验证了MeSnRK2.12和转录因子MebHLH1间存在互作, 且前期研究发现MebHLH1可以上调木薯蔗糖合酶基因MeSus1的转录活性, 而蔗糖合酶的活性与植物库强直接相关。因此, 推测MeSnRK2.12不仅在木薯应对逆境胁迫中发挥具有作用, 还可能参与ABA信号介导的淀粉合成调控, 有助于木薯在逆境条件下获得相对较高的淀粉产量。

关键词: 木薯, SnRK2s, bHLH, ABA, PEG

Abstract:

Protein kinase SnRK2s (Sucrose Non-fermenting Related Protein Kinase 2) is a key component of plant stress resistance mechanism. Cassava is an important food and industrial crop in the world, with the characteristics of high starch accumulation and stresses resistance. So far, the mechanism of MeSnRK2 family member involved in the regulation of starch synthesis under stress is unclear. MeSnRK2.12 was chosen in this study, which is a member of the weakly ABA-induced SnRK2s. Firstly, some stress-response cis-elements distributed in its promoter region, such as drought stress cis-element MBS and ABA response element ABRE. Secondly, its amino acid sequence was highly homologous to AtSnRK2.8 and OsSAPK1/2. MeSnRK2.12 could respond quickly to ABA and PEG treatments within two hours, and its transcription activity was inhibited in roots, but was induced in stem, and the highest values were 15 times and 8 times of the control, respectively. There was also an significant up-regulation trend in leaves, but the degree was lower than that in stems. Subcellular localization showed that MeSnRK2.12 located in the cytoplasm and cell nucleus. The interaction between MeSnRK2.12 and MebHLH1 was verified by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments. Previous studies revealed that MebHLH1 could up-regulate the transcription activity of MeSus1, and the activity of sucrose synthase was directly related to plant sink strength. Therefore, it is speculated that MeSnRK2.12 not only plays an important role in response to stress, but also may be involved in the regulation of starch synthesis mediated by ABA signal, which helps cassava achieve relatively high starch yield under stress conditions.

Key words: cassava, SnRK2s, bHLH, ABA, PEG

表1

试验所用引物"

引物名称Primer name 引物序列Primer sequence (5°-3°) 用途Purpose
MeSnRK2.12 F CATATGGAGCGTTATGAGATTATCAAAG 全长扩增克隆Full length amplification
MeSnRK2.12 R ACTAGTCAAAGGGCATACGAAATC
Tubulin-F GTGGAGGAACTGGTTCTGGA 荧光定量PCR RT-qPCR
Tubulin-R TGCAACTCATCTGCATTTCTCC
qMeSnRK2.12 F GACGTTTGGTCTTGTGGAGT 荧光定量PCR RT-qPCR
qMeSnRK2.12 R GATAACAGGTGCCTGCATTCTA

图1

MeSnRK2.12、OsSAPK1、OsSAPK2和AtSnRK2.8氨基酸序列比对"

图2

MeSnRK2.12基因响应PEG胁迫的表达模式 R、S和L分别为PEG-6000处理下的根、茎和叶。柱上不同小写字母表示存在0.05概率水平差异显著。"

图3

MeSnRK2.12基因响应ABA处理的表达模式 R1、S1和L1分别为1.0 μmol L-1ABA处理下的根、茎和叶; R10、S10和L10分别为1.0 μmol L-1ABA处理下的根、茎和叶; R100、S100和L100分别为100.0 μmol L-1ABA处理下的根、茎和叶。柱上不同小写字母表示在0.05概率水平差异显著。"

图4

MeSnRK2.12亚细胞定位 标尺为20 μm。"

图5

酵母双杂交分析证明SnRK2.12与bHLH1互作"

图6

双分子荧光互补试验检测SnRK2.12与bHLH1互作 标尺为20 μm。"

[1] El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004, 56: 481-501.
doi: 10.1007/s11103-005-2270-7 pmid: 15669146
[2] 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议. 农业展望, 2014, 10(8): 41-48.
Jiang H P, Ni Y F, Zhu F S. Development mode and strategies of China’s Cassava industry. Agric Outlook, 2014, 10(8): 41-48. (in Chinese with English abstract)
doi: 10.1177/003072707901000107
[3] Uchechukwu-Agua A D, Caleb O J, Opara U L. Postharvest handling and storage of fresh Cassava root and products: a review. Food Bioproc Technol, 2015, 8: 729-748.
doi: 10.1007/s11947-015-1478-z
[4] 刘子茜, 朱雅欣, 伍国强, 魏明. SnRK2在植物响应逆境胁迫和生长发育中的作用. 生物工程学报, 2022, 38(1): 89-103.
Liu Z X, Zhu Y X, Wu G Q, Wei M. The role of SnRK2 in the response to stress, the growth and development of plants. Chin J Biotechnol, 2022, 38(1): 89-103 (in Chinese with English abstract).
[5] Maszkowska J, Szymańska K P, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. The multifaceted regulation of SnRK2 kinases. Cells, 2021, 10: 2180.
doi: 10.3390/cells10092180
[6] Boudsocq M, Droillard M J, Barbier-Brygoo, Barbier-Brygoo H, Laurière C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol, 2007, 63: 491-503.
doi: 10.1007/s11103-006-9103-1 pmid: 17103012
[7] Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J, 2005, 44: 939-949.
doi: 10.1111/j.1365-313X.2005.02583.x pmid: 16359387
[8] Mao X, Li Y, Rehman S U, Miao L, Zhang Y, Chen X, Yu C, Wang J, Li C, Jing R. The sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2) genes are multifaceted players in Plant Growth, Development and Response to Environmental Stimuli. Plant Cell Physiol, 2020, 61: 225-242.
doi: 10.1093/pcp/pcz230 pmid: 31834400
[9] Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases-key regulators of plant response to abiotic stresses. J Integr Biol, 2011, 15: 859-872.
[10] Soma F, Mogami J, Yoshida T, Abekura M, Takahashi F, Kidokoro S, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nat Plants, 2017, 3: 16204.
doi: 10.1038/nplants.2016.204 pmid: 28059081
[11] Maszkowska J, Dębski J, Kulik A, Kistowski M, Bucholc M, Lichocka M, Klimecka M, Sztatelman O, Szymańska K P, Dadlez M, Dobrowolska G. Phosphoproteomic analysis reveals that dehydrins ERD10 and ERD14 are phosphorylated by SNF1-related protein kinase 2.10 in response to osmotic stress. Plant Cell Environ, 2019, 42: 931-946.
doi: 10.1111/pce.13465
[12] Shin R, Alvarez S, Burch A Y, Jez J M, Schachtman D P. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci USA, 2007, 104: 6460-6465.
doi: 10.1073/pnas.0610208104
[13] Collin A, Daszkowska-Golec A, Szarejko I. Updates on the role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA signaling in different developmental stages in plants. Cells, 2021, 10: 1996.
doi: 10.3390/cells10081996
[14] Rainer W, Charles A S, Po-Kai H, Yohei T, Shintaro M, Julian I S. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
doi: 10.1038/s41580-022-00479-6
[15] Hsu P K, Dubeaux G, Takahashi Y, Schroeder J I. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J, 2021, 105: 307-321.
doi: 10.1111/tpj.v105.2
[16] McLoughlin F, Galvan-Ampudia C S, Julkowska M M, Caarls L, Vander D D, Laurière C, Munnik T, Haring M A, Testerink C. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J, 2012, 72: 436-449.
doi: 10.1111/tpj.2012.72.issue-3
[17] Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci, 2021, 22: 7152.
doi: 10.3390/ijms22137152
[18] Jiang Y, Yang B, Michael K D. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics, 2009, 282: 503-516.
doi: 10.1007/s00438-009-0481-3
[19] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016.
doi: 10.3724/SP.J.1006.2020.03022
Yang M T, Zhang C, Wang Z P, Zou H W, Wu Z Y. Cloning and functional analysis of ZmbHLH161 gene in maize. Acta Agron Sin, 2020, 46: 2008-2016. (in Chinese with English abstract)
[20] Feibing W, Zhu H, Chen D H, Li Z J, Peng R, Yao Q H. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult, 2016, 125: 387-398.
doi: 10.1007/s11240-016-0953-1
[21] Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiol Plant, 2017, 160: 312-327.
doi: 10.1111/ppl.2017.160.issue-3
[22] 刘陈. 木薯蔗糖合酶基因家族及蔗糖合酶1基因的转录调控因子的研究. 海南大学博士学位论文, 海南海口, 2018.
Liu C. Study on Sucrose Synthase Gene Family and Transcription Regulators of MeSus1 in Cassava (Manihot esculenta). PhD Dissertation of Hainan University, Haikou, Hainan, China, 2018. (in Chinese with English abstract)
[23] Yan P, Zeng Y, Shen W, Tuo D, Li X, Zhou P. Nimble cloning: a simple, versatile, and efficient system for standardized molecular cloning. Front Bioeng Biotechnol, 2020, 7: 460.
doi: 10.3389/fbioe.2019.00460
[24] Fàbregas N, Yoshida T, Fernie A R. Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nat Commun, 2020, 11: 6184.
doi: 10.1038/s41467-020-19977-2 pmid: 33273465
[25] Lou D, Wang H, Yu D. The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol, 2018, 18: 203.
doi: 10.1186/s12870-018-1408-0 pmid: 30236054
[26] Lou D, Wang H, Liang G, Yu D. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci, 2017, 13: 993.
[27] 谭秦亮, 李长宁, 杨丽涛, 李杨瑞. 甘蔗ABA信号转导关键酶SoSnRK2.1基因的克隆与表达分析. 作物学报, 2013, 39: 2162-2170.
doi: 10.3724/SP.J.1006.2013.02162
Tan Q L, Li C N, Yang L T, Li Y R. Cloning and expression analysis of abscisic acid signal transduction key enzyme gene SoSnRK2.1 from sugarcane. Acta Agron Sin, 2013, 39: 2162-2170. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.02162
[28] 胡丹丹, 张帆, 黄立钰, 卓大龙, 张帆, 周永力, 石英尧, 黎志康. 胁迫相关蛋白激酶基因OsSAPK2调控水稻抗白叶枯病反应. 作物学报, 2015, 41: 1191-1200.
doi: 10.3724/SP.J.1006.2015.01191
Hu D D, Zhang F, Huang L Y, Zhuo D L, Zhang F, Zhou Y L, Shi Y Y, Li Z K. Stress-activated protein kinase OsSAPK2 involved in regulating resistant response to Xanthomonas oryzae pv. oryzae in rice. Acta Agron Sin, 2015, 41: 1191-1200. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01191
[29] Lei L, Stevens D M, Coaker G. Phosphorylation of the pseudomonas effector AvrPtoB by Arabidopsis SnRK2.8 is required for bacterial virulence. Mol Plant, 2020, 13: 1513-1522.
doi: 10.1016/j.molp.2020.08.018 pmid: 32889173
[1] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[2] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[3] 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479.
[4] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[5] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[6] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[7] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答[J]. 作物学报, 2022, 48(12): 3004-3017.
[8] 李相辰, 沈旭, 周新成, 陈新, 王海燕, 王文泉. 木薯PEPC基因家族成员鉴定及表达分析[J]. 作物学报, 2022, 48(12): 3108-3119.
[9] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[10] 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818.
[11] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016.
[12] 尚维,赵申清玉,党江波,郭启高,梁国鲁,杨超,张艳,陈益银. 基于SSR分子标记的Nicotiana tobacum-N. plumbaginifolia异源染色体植株的鉴定与筛选[J]. 作物学报, 2018, 44(11): 1640-1649.
[13] 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299.
[14] 郝岭,张钰石,段留生,张明才*,李召虎. 玉米ZmBRI1基因的克隆、表达及功能分析[J]. 作物学报, 2017, 43(09): 1261-1271.
[15] 于晓玲,阮孟斌,王斌,杨义伶,王树昌*,彭明*. 木薯转录因子基因MeHDZ14的克隆与分析[J]. 作物学报, 2017, 43(08): 1181-1189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[8] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[9] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[10] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .