作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2594-2600.doi: 10.3724/SP.J.1006.2023.24225
• 研究简报 • 上一篇
郁雪婷1(), 李可2, 李梦桃1, 鲍茹雪1, 陈新3,*(), 王文泉1
YU Xue-Ting1(), LI Ke2, LI Meng-Tao1, BAO Ru-Xue1, CHEN Xin3,*(), WANG Wen-Quan1
摘要:
蛋白激酶SnRK2s (Sucrose Non-fermenting Related Protein Kinase 2)是植物抗逆境机制中的关键组分。木薯是全球重要的食品和工业作物, 具有高淀粉累积和耐逆境的特点。迄今对木薯MeSnRK2家族成员参与逆境下淀粉合成调控的内在机制尚不清楚。本文围绕SnRK2家族受ABA微弱诱导的成员MeSnRK2.12展开研究, 先对其进行生物信息学分析后发现其启动子区分布逆境响应元件: 干旱胁迫MBS和ABA应答ABRE等顺式作用元件, 且其氨基酸序列与AtSnRK2.8和OsSAPK1/2高度同源。ABA和PEG6000处理木薯SC8植株后发现, MeSnRK2.12可以在2 h内快速响应ABA和PEG6000处理, 其转录活性在根中被抑制; 在茎中被诱导上调, 最高值分别为对照的15.0倍和8.0倍; 在叶中也呈现上调趋势, 但程度低于茎中。亚细胞定位试验结果显示MeSnRK2.12分布于细胞质和细胞核, 利用酵母双杂交和双分子荧光互补(BiFC)试验均验证了MeSnRK2.12和转录因子MebHLH1间存在互作, 且前期研究发现MebHLH1可以上调木薯蔗糖合酶基因MeSus1的转录活性, 而蔗糖合酶的活性与植物库强直接相关。因此, 推测MeSnRK2.12不仅在木薯应对逆境胁迫中发挥具有作用, 还可能参与ABA信号介导的淀粉合成调控, 有助于木薯在逆境条件下获得相对较高的淀粉产量。
[1] |
El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004, 56: 481-501.
doi: 10.1007/s11103-005-2270-7 pmid: 15669146 |
[2] | 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议. 农业展望, 2014, 10(8): 41-48. |
Jiang H P, Ni Y F, Zhu F S. Development mode and strategies of China’s Cassava industry. Agric Outlook, 2014, 10(8): 41-48. (in Chinese with English abstract)
doi: 10.1177/003072707901000107 |
|
[3] |
Uchechukwu-Agua A D, Caleb O J, Opara U L. Postharvest handling and storage of fresh Cassava root and products: a review. Food Bioproc Technol, 2015, 8: 729-748.
doi: 10.1007/s11947-015-1478-z |
[4] | 刘子茜, 朱雅欣, 伍国强, 魏明. SnRK2在植物响应逆境胁迫和生长发育中的作用. 生物工程学报, 2022, 38(1): 89-103. |
Liu Z X, Zhu Y X, Wu G Q, Wei M. The role of SnRK2 in the response to stress, the growth and development of plants. Chin J Biotechnol, 2022, 38(1): 89-103 (in Chinese with English abstract). | |
[5] |
Maszkowska J, Szymańska K P, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. The multifaceted regulation of SnRK2 kinases. Cells, 2021, 10: 2180.
doi: 10.3390/cells10092180 |
[6] |
Boudsocq M, Droillard M J, Barbier-Brygoo, Barbier-Brygoo H, Laurière C. Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol Biol, 2007, 63: 491-503.
doi: 10.1007/s11103-006-9103-1 pmid: 17103012 |
[7] |
Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J, 2005, 44: 939-949.
doi: 10.1111/j.1365-313X.2005.02583.x pmid: 16359387 |
[8] |
Mao X, Li Y, Rehman S U, Miao L, Zhang Y, Chen X, Yu C, Wang J, Li C, Jing R. The sucrose Non-Fermenting 1-Related Protein Kinase 2 (SnRK2) genes are multifaceted players in Plant Growth, Development and Response to Environmental Stimuli. Plant Cell Physiol, 2020, 61: 225-242.
doi: 10.1093/pcp/pcz230 pmid: 31834400 |
[9] | Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases-key regulators of plant response to abiotic stresses. J Integr Biol, 2011, 15: 859-872. |
[10] |
Soma F, Mogami J, Yoshida T, Abekura M, Takahashi F, Kidokoro S, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nat Plants, 2017, 3: 16204.
doi: 10.1038/nplants.2016.204 pmid: 28059081 |
[11] |
Maszkowska J, Dębski J, Kulik A, Kistowski M, Bucholc M, Lichocka M, Klimecka M, Sztatelman O, Szymańska K P, Dadlez M, Dobrowolska G. Phosphoproteomic analysis reveals that dehydrins ERD10 and ERD14 are phosphorylated by SNF1-related protein kinase 2.10 in response to osmotic stress. Plant Cell Environ, 2019, 42: 931-946.
doi: 10.1111/pce.13465 |
[12] |
Shin R, Alvarez S, Burch A Y, Jez J M, Schachtman D P. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci USA, 2007, 104: 6460-6465.
doi: 10.1073/pnas.0610208104 |
[13] |
Collin A, Daszkowska-Golec A, Szarejko I. Updates on the role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA signaling in different developmental stages in plants. Cells, 2021, 10: 1996.
doi: 10.3390/cells10081996 |
[14] |
Rainer W, Charles A S, Po-Kai H, Yohei T, Shintaro M, Julian I S. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
doi: 10.1038/s41580-022-00479-6 |
[15] |
Hsu P K, Dubeaux G, Takahashi Y, Schroeder J I. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J, 2021, 105: 307-321.
doi: 10.1111/tpj.v105.2 |
[16] |
McLoughlin F, Galvan-Ampudia C S, Julkowska M M, Caarls L, Vander D D, Laurière C, Munnik T, Haring M A, Testerink C. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J, 2012, 72: 436-449.
doi: 10.1111/tpj.2012.72.issue-3 |
[17] |
Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci, 2021, 22: 7152.
doi: 10.3390/ijms22137152 |
[18] |
Jiang Y, Yang B, Michael K D. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics, 2009, 282: 503-516.
doi: 10.1007/s00438-009-0481-3 |
[19] |
杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016.
doi: 10.3724/SP.J.1006.2020.03022 |
Yang M T, Zhang C, Wang Z P, Zou H W, Wu Z Y. Cloning and functional analysis of ZmbHLH161 gene in maize. Acta Agron Sin, 2020, 46: 2008-2016. (in Chinese with English abstract) | |
[20] |
Feibing W, Zhu H, Chen D H, Li Z J, Peng R, Yao Q H. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult, 2016, 125: 387-398.
doi: 10.1007/s11240-016-0953-1 |
[21] |
Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, Bellini C. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiol Plant, 2017, 160: 312-327.
doi: 10.1111/ppl.2017.160.issue-3 |
[22] | 刘陈. 木薯蔗糖合酶基因家族及蔗糖合酶1基因的转录调控因子的研究. 海南大学博士学位论文, 海南海口, 2018. |
Liu C. Study on Sucrose Synthase Gene Family and Transcription Regulators of MeSus1 in Cassava (Manihot esculenta). PhD Dissertation of Hainan University, Haikou, Hainan, China, 2018. (in Chinese with English abstract) | |
[23] |
Yan P, Zeng Y, Shen W, Tuo D, Li X, Zhou P. Nimble cloning: a simple, versatile, and efficient system for standardized molecular cloning. Front Bioeng Biotechnol, 2020, 7: 460.
doi: 10.3389/fbioe.2019.00460 |
[24] |
Fàbregas N, Yoshida T, Fernie A R. Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nat Commun, 2020, 11: 6184.
doi: 10.1038/s41467-020-19977-2 pmid: 33273465 |
[25] |
Lou D, Wang H, Yu D. The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol, 2018, 18: 203.
doi: 10.1186/s12870-018-1408-0 pmid: 30236054 |
[26] | Lou D, Wang H, Liang G, Yu D. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci, 2017, 13: 993. |
[27] |
谭秦亮, 李长宁, 杨丽涛, 李杨瑞. 甘蔗ABA信号转导关键酶SoSnRK2.1基因的克隆与表达分析. 作物学报, 2013, 39: 2162-2170.
doi: 10.3724/SP.J.1006.2013.02162 |
Tan Q L, Li C N, Yang L T, Li Y R. Cloning and expression analysis of abscisic acid signal transduction key enzyme gene SoSnRK2.1 from sugarcane. Acta Agron Sin, 2013, 39: 2162-2170. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.02162 |
|
[28] |
胡丹丹, 张帆, 黄立钰, 卓大龙, 张帆, 周永力, 石英尧, 黎志康. 胁迫相关蛋白激酶基因OsSAPK2调控水稻抗白叶枯病反应. 作物学报, 2015, 41: 1191-1200.
doi: 10.3724/SP.J.1006.2015.01191 |
Hu D D, Zhang F, Huang L Y, Zhuo D L, Zhang F, Zhou Y L, Shi Y Y, Li Z K. Stress-activated protein kinase OsSAPK2 involved in regulating resistant response to Xanthomonas oryzae pv. oryzae in rice. Acta Agron Sin, 2015, 41: 1191-1200. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01191 |
|
[29] |
Lei L, Stevens D M, Coaker G. Phosphorylation of the pseudomonas effector AvrPtoB by Arabidopsis SnRK2.8 is required for bacterial virulence. Mol Plant, 2020, 13: 1513-1522.
doi: 10.1016/j.molp.2020.08.018 pmid: 32889173 |
[1] | 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497. |
[2] | 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295. |
[3] | 丁杰荣, 马雅美, 潘发枝, 江立群, 黄文洁, 孙炳蕊, 张静, 吕树伟, 毛兴学, 于航, 李晨, 刘清. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报, 2023, 49(6): 1466-1479. |
[4] | 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965. |
[5] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[6] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[7] | 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答[J]. 作物学报, 2022, 48(12): 3004-3017. |
[8] | 李相辰, 沈旭, 周新成, 陈新, 王海燕, 王文泉. 木薯PEPC基因家族成员鉴定及表达分析[J]. 作物学报, 2022, 48(12): 3108-3119. |
[9] | 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49. |
[10] | 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818. |
[11] | 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016. |
[12] | 尚维,赵申清玉,党江波,郭启高,梁国鲁,杨超,张艳,陈益银. 基于SSR分子标记的Nicotiana tobacum-N. plumbaginifolia异源染色体植株的鉴定与筛选[J]. 作物学报, 2018, 44(11): 1640-1649. |
[13] | 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299. |
[14] | 郝岭,张钰石,段留生,张明才*,李召虎. 玉米ZmBRI1基因的克隆、表达及功能分析[J]. 作物学报, 2017, 43(09): 1261-1271. |
[15] | 于晓玲,阮孟斌,王斌,杨义伶,王树昌*,彭明*. 木薯转录因子基因MeHDZ14的克隆与分析[J]. 作物学报, 2017, 43(08): 1181-1189. |
|