欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3315-3327.doi: 10.3724/SP.J.1006.2023.34017

• 耕作栽培·生理生化 • 上一篇    下一篇

长江流域不同生态区油菜籽关键品质比较研究

宁宁1(), 莫娇2, 胡冰2, 李大双1, 娄洪祥1, 王春云1, 白晨阳1, 蒯婕1, 汪波1, 王晶1, 徐正华1, 李晓华3, 贾才华2,*(), 周广生1   

  1. 1华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
    2华中农业大学食品科学技术学院 / 教育部环境食品学重点实验室, 湖北武汉 430070
    3湖北中医药大学药学院, 湖北武汉 430065
  • 收稿日期:2023-01-19 接受日期:2023-06-29 出版日期:2023-12-12 网络出版日期:2023-07-21
  • 通讯作者: * 贾才华, E-mail: chjia@mail.hzau.edu.cn
  • 作者简介:E-mail: 1208299842@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1600502)

Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley

NING Ning1(), MO Jiao2, HU Bing2, LI Da-Shuang1, LOU Hong-Xiang1, WANG Chun-Yun1, BAI Chen-Yang1, KUAI Jie1, WANG Bo1, WANG Jing1, XU Zheng-Hua1, LI Xiao-Hua3, JIA Cai-Hua2,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environmental Food Science, Ministry of Education, Wuhan 430070, Hubei, China
    3School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430065, Hubei, China
  • Received:2023-01-19 Accepted:2023-06-29 Published:2023-12-12 Published online:2023-07-21
  • Contact: * E-mail: chjia@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600502)

摘要:

本研究选用长江流域上中下游各6个油菜品种, 采用相同栽培措施在四川、湖北与浙江试验点种植, 籽粒成熟后收获冷榨, 测定菜籽油不饱和脂肪酸(USFAs)组成及叶绿素、极性总酚、植物甾醇、生育酚等含量等指标, 凝炼各试点菜籽油关键特征。结果表明, 油菜籽粒含油量、出油效率指标, 菜籽油中叶绿素、极性总酚、植物甾醇、生育酚含量等指标在试点间均存在差异。(1) 籽粒含油量四川优于湖北, 浙江试点最低, 并且中下游地区的品种在四川种植, 含油量增加; 浙江试点的籽粒出油效率最高, 其次为四川试点, 湖北试点最低。(2) 四川试点菜籽油油酸含量最高, 其次为浙江试点, 湖北试点最低, 但湖北试点有较高的亚油酸和亚麻酸含量; 菜籽油极性总酚与植物甾醇含量在四川试点最高, 其次为湖北试点, 浙江试点最低; 菜籽油生育酚含量及外观品质则相反, 浙江试点最佳, 其次则依次为湖北、四川试点。(3) 四川试点的菜籽油抗氧化能力优于湖北, 浙江试点最低, 四川试点较强的抗氧化能力主要得益于油菜角果期较低的温度与降雨量。综上, 长江流域不同试验点菜籽油品质存在差异。本研究结果可为各生态区优质油菜品种选用提供参考。

关键词: 冬油菜, 生态区, 菜籽油, 冷榨, 加工品质

Abstract:

Six rapeseed cultivars were chosen from three regions, including the upper, middle, and lower Yangtze River valley, and planted in Sichuan, Hubei, and Zhejiang experimental sites using the similar cultivation measures. The rapeseed was harvested at maturity stage, followed by cold pressing and the composition of unsaturated fatty acids (USFAs) and the content of chlorophyll, the total polar phenols, phytosterols, and tocopherols of rapeseed oil were assessed. Moreover, the essential properties of rapeseed oil on each experimental site were refined. The results showed that there were significant differences between the experimental sites in terms of the oil content and oil extraction efficiency of rapeseed, the chlorophyll, the total polar phenols, phytosterols, and tocopherol content of rapeseed oil. The results showed that: (1) Sichuan had a higher oil content than Hubei, whereas Zhejiang had the lowest oil content. The varieties from the middle and lower reaches of the Yangtze River were planted in Sichuan and their oil content increased, meanwhile Zhejiang had the highest seed oil extraction efficiency followed by Sichuan and Hubei. (2) The oleic acid content of rapeseed oil was the highest in Sichuan, followed by Zhejiang and Hubei; whereas the higher linoleic and linolenic acid contents were noted at the Hubei experimental site. Moreover, the total polar phenols and phytosterol content of rapeseed oil was the highest in the Sichuan followed by Hubei and Zhejiang; contrarily, the tocopherol content and color of rapeseed oil were best in the Zhejiang followed by Hubei and Sichuan. (3) Rapeseed oil's antioxidant capacity significantly varied between sites, which was the highest in Sichuan, followed by the Hubei and Zhejiang. The lower temperature and rainfall during rapeseed pod maturity period contributed to the stronger antioxidant capacity of studied cultivars in Sichuan site. Conclusively, the rapeseed oil quality was varied at different experimental sites in the Yangtze River valley. Thus, the findings of the current study can be used as a reference when choosing high-quality rapeseed varieties in different ecological zones.

Key words: winter rapeseed, ecological zone, rapeseed oil, cold-pressed, processing quality

表1

试验材料"

来源地 Variety source 编号Number 品种名称Variety name
长江上游 The Upper Yangtze River 1 庆油1号 Qingyou 1
2 庆油3号 Qingyou 3
3 渝油28 Yuyou 28
4 川油81 Chuanyou 81
5 川油36 Chuanyou 36
6 国豪油8号 Guohaoyou 8
长江中游 The Middle Yangtze River 7 湘杂518 Xiangza 518
8 沣油737 Fengyou 737
9 大地199 Dadi 199
10 中油杂19 Zhongyouza 19
11 华油杂50 Huayouza 50
12 华油杂62 Huayouza 62
长江下游 The Lower Yangtze River 13 扬油9号 Yangyou 9
14 盐油杂3号 Yanyouza 3
15 宁杂1838 Ningza 1838
16 浙油50 Zheyou 50
17 浙油51 Zheyou 51
18 浙油杂108 Zheyouza 108

图1

油菜角果期各试点主要气候因子"

表2

菜籽油性状的方差分析"

因素
Factor
含油量OC 出油效率OEE 叶绿素CHL R Y 油酸
OA
亚油酸LA 亚麻酸LNA 极性总酚TPP 植物甾醇PS 生育酚Toc DPPH FRAP
品种
Variety (V)
1815.6** 2.6** 231.7** 8.3** 34.5** 1735.2** 630.1** 568.8** 43.4** 23.9** 140.1** 479.0** 108.6**
地点
Location (L)
3546.5** 337.8** 401.9** 40.6** 101.3** 2667.4** 891.0** 1249.2** 1452.6** 445.6** 79.5** 12,903.3** 8299.5**
品种×地点V×L 212.3** 2.6** 186.3** 6.7** 44.1** 211.8** 65.1** 118.4** 20.8** 18.9** 25.5** 313.4** 49.8**

图2

三试点18个油菜品种的籽粒含油量及出油效率 最小显著差异(LSD)法进行多重比较, 柱上不同小写字母表示处理间差异达显著水平(P < 0.05)。"

表3

三试点18个油菜品种菜籽油叶绿素含量和罗维朋色泽值(红值、黄值)"

品种Variety 四川Sichuan 湖北Hubei 浙江Zhejiang
叶绿素含量
Chlorophyll contents
(mg kg-1)
红值
Red-value
黄值
Yellow-value
叶绿素含量
Chlorophyll content
(mg kg-1)
红值
Red-value
黄值
Yellow-value
叶绿素含量
Chlorophyll content
(mg kg-1)
红值
Red-value
黄值
Yellow-value
1 0.91 a 2.00 f 45.00 a 0.28 hi 3.00 ab 20.50 d 0.39 f 2.00 f 51.00 a
2 0.11 m 2.20 ef 32.00 c 0.07 k 2.00 c 20.60 d 0.12 j 2.25 cd 22.50 e
3 0.19 k 2.40 def 31.00 c 0.23 ij 2.30 bc 20.00 d 0.18 i 2.05 ef 20.00 vf
4 0.26 h 3.00 ab 31.00 c 0.54 c 3.00 ab 20.10 d 0.56 d 2.20 de 21.05 ef
5 0.32 f 2.80 bcd 32.00 c 0.82 a 3.05 a 20.00 d 0.27 g 2.05 ef 21.00 ef
6 0.44 d 2.90 bc 30.65c 0.38 fg 2.50 abc 25.00 cd 0.30 g 2.00 f 20.00 f
7 0.31 f 2.15 ef 31.00 c 0.87 a 2.50 abc 20.55 d 0.73 b 2.00 f 30.00 c
8 0.29 g 1.55 g 31.00 c 0.24 ij 2.00 c 20.00 d 0.22 h 2.50 ab 21.00 ef
9 0.22 j 2.90 bc 30.50 c 0.34 gh 2.65 abc 20.00 d 0.96 a 2.40 bc 39.50 b
10 0.16 l 2.50 cde 31.50 c 0.72 b 2.00 c 25.75 cd 0.64 c 2.00 f 20.00 f
11 0.23 i 3.00 ab 30.00 c 0.49 cd 2.00 c 30.00 c 0.21 hi 2.15 def 21.00 ef
12 0.34 e 3.40 a 31.50 c 0.41 efg 2.10 c 65.00 a 0.21 hi 2.50 ab 22.00 ef
13 0.48 c 3.00 ab 31.50 c 0.70 b 3.00 ab 21.00 d 0.29 g 2.60 a 22.50 e
14 0.21 j 2.15 ef 38.50 b 0.47 cde 3.00 ab 20.00 d 0.37 f 2.00 f 30.00 c
15 0.18 k 2.30 ef 31.00 c 0.27 hi 3.00 ab 20.00 d 0.72 b 2.00 f 30.00 c
16 0.21 j 3.20 ab 26.50 d 0.82 a 3.10 a 55.00 b 0.47 e 2.00 f 21.00 ef
17 0.62 b 2.45 cdef 32.00 c 0.45 def 2.00 c 31.00 c 0.40 f 2.05 ef 27.00 d
18 0.19 k 2.00 f 31.00 c 0.18 j 2.65 abc 20.00 d 0.36 f 2.10 def 31.00 c
平均Mean 0.32 2.55 32.09 0.46 2.55 26.36 0.41 2.16 26.14

表4

三试点18个油菜品种菜籽油油酸、亚油酸、亚麻酸含量和亚麻酸/亚油酸(ω-6/ω-3)"

品种
Variety
四川Sichuan 湖北Hubei 浙江Zhejiang
油酸
Oleic acid (%)
亚油酸
Linoleic acid (%)
亚麻酸Linolenic acid (%) ω-6/
ω-3
油酸
Oleic acid (%)
亚油酸Linoleic acid (%) 亚麻酸Linolenic acid (%) ω-6/
ω-3
油酸
Oleic acid (%)
亚油酸Linoleic acid (%) 亚麻酸Linolenic acid (%) ω-6/
ω-3
1 66.20 i 17.95 de 8.17 h 2.20 65.45 cd 18.79 h 8.91 g 2.11 67.35 b 17.79 g 7.52 j 2.37
2 66.47 g 17.62 efg 8.79 e 2.00 64.17 e 19.19 g 9.62 d 1.99 65.94 de 18.53 f 8.41 g 2.20
3 65.11 k 18.59 c 9.06 c 2.05 59.71 j 20.37 d 9.70 d 2.10 62.51 g 18.81 e 8.78 d 2.14
4 62.75 q 18.62 c 9.11 c 2.04 58.92 k 20.55 c 10.03 ab 2.05 61.60 h 19.39 cd 8.80 d 2.20
5 65.29 j 17.92 def 8.80 e 2.04 59.89 j 20.12 e 9.22 f 2.18 62.60 g 20.24 b 9.21 b 2.20
6 63.12 o 17.54 fgh 9.72 a 1.81 58.95 k 18.51 i 9.76 cd 1.90 57.20 j 19.48 c 10.31 a 1.89
7 63.02 p 20.51 a 9.28 b 2.21 61.51 h 22.23 a 8.79 gh 2.53 62.76 g 21.39 a 9.19 b 2.33
8 66.95 e 17.19 hi 8.67 f 1.98 64.25 e 18.39 i 9.80 cd 1.88 64.51 f 19.45 c 9.10 c 2.14
9 68.04 b 16.06 j 8.89 d 1.81 65.34 d 17.42 kl 10.19 a 1.71 65.51 e 16.51 k 7.88 h 2.10
10 63.40 n 17.36 gh 9.31 b 1.87 62.96 g 18.04 j 9.43 e 1.91 59.64 i 17.07 i 8.55 f 2.00
11 68.19 a 16.35 j 8.17 h 2.00 65.26 d 17.51 k 8.81 gh 1.99 68.88 a 16.39 k 7.68 i 2.13
12 64.24 m 19.14 b 8.75 e 2.19 66.79 a 17.29 l 8.18 i 2.11 64.59 f 19.22 d 8.68 e 2.21
13 66.69 f 16.88 i 8.72 ef 1.94 65.58 c 17.46 k 8.65 h 2.02 66.83 c 16.73 j 7.80 h 2.14
14 66.31 h 17.89 ef 8.64 f 2.07 63.28 f 19.36 f 9.13 f 2.12 67.40 bc 17.70 g 7.87 h 2.25
15 66.86 e 17.20 hi 8.31 g 2.07 66.59 a 18.03 j 7.75 j 2.33 67.15 bc 17.64 g 7.29 k 2.42
16 67.52 d 16.95 i 8.16 h 2.08 66.12 b 17.32 l 7.36 k 2.35 67.69 b 17.09 i 7.46 j 2.29
17 64.86 l 18.28 cd 9.06 c 2.02 60.99 i 20.70 b 9.90 bc 2.09 65.64 e 18.33 f 8.58 f 2.14
18 67.89 c 16.17 j 8.77 e 1.84 65.32 d 17.93 j 9.44 e 1.90 66.22 d 17.37 h 9.02 c 1.93
Mean 65.72 17.68 8.80 2.01 63.39 18.84 9.15 2.07 64.66 18.28 8.44 2.17

表5

三试点18个油菜品种菜籽油植物甾醇与极性总酚含量"

品种Variety 四川Sichuan 湖北Hubei 浙江Zhejiang
植物甾醇 Phytosterol
(mg kg-1)
极性总酚
Total polar phenols (mg 100 g-1)
植物甾醇 Phytosterol
(mg kg-1)
极性总酚
Total polar phenols (mg 100 g-1)
植物甾醇 Phytosterol
(mg kg-1)
极性总酚
Total polar phenols (mg 100 g-1)
1 8036.96 efgh 42.82 bcd 7591.93 bcd 32.09 abc 6563.61 bc 16.50 d
2 9103.83 cde 29.74 ef 8020.92 b 25.47 cde 7016.90 ab 18.85 c
3 8748.94 cdef 55.18 a 7904.90 b 16.50 f 6639.73 bc 5.91 j
4 6478.34 i 38.56 d 7212.61 cde 26.21 cde 6407.22 c 7.38 i
5 9411.13 bcd 32.09 ef 7984.45 b 25.76 cde 5097.88 e 9.15 gh
6 8474.94 defg 47.53 b 6755.99 ef 26.35 cde 6389.88 c 16.35 d
7 9794.04 abc 15.03 g 9221.90 a 16.35 f 7481.95 a 4.44 kl
8 7221.04 hi 39.44 d 6593.48 f 25.91 cde 5621.17 d 25.03 a
9 8982.32 cdef 42.97 bcd 6053.09 g 26.65 cde 6993.42 ab 20.76 b
10 7924.66 fgh 39.44 d 6083.19 g 25.03 de 6553.62 bc 3.85 lm
11 8712.27 cdef 41.50 cd 7567.98 bcd 33.56 ab 6763.85 bc 14.15 e
12 7491.09 ghi 46.79 bc 7674.35 bc 38.26 a 6390.08 c 10.03 fg
13 6614.81 i 27.09 f 7387.84 cd 16.94 f 6422.21 c 5.18 jk
14 10,427.21 ab 52.97 a 7615.63 bcd 22.09 ef 6545.87 bc 18.71 c
15 9323.49 cd 54.88 a 6400.53 fg 25.76 cde 3823.43 f 5.03 jk
16 10,539.78 a 33.56 e 4940.33 h 30.32 bcd 3877.18 f 8.71 h
17 8851.40 cdef 28.12 ef 7997.02 b 16.06 f 6722.22 bc 3.12 m
18 7295.79 hi 30.03 ef 7145.49 de 29.74 bcd 6419.56 c 10.76 f
Mean 8524.00 38.76 7230.65 25.50 6207.21 11.33

表6

三试点18个油菜品种菜籽油生育酚含量"

品种
Variety
四川Sichuan 湖北Hubei 浙江Zhejiang
α-生育酚
α-tocopherol
(mg kg-1)
γ-生育酚
γ-tocopherol
(mg kg-1)
总生育酚
Total
tocopherol
(mg kg-1)
α-生育酚
α-tocopherol
(mg kg-1)
γ-生育酚
γ-tocopherol
(mg kg-1)
总生育酚
Total
tocopherol
(mg kg-1)
α-生育酚
α-tocopherol
(mg kg-1)
γ-生育酚
γ-tocopherol
(mg kg-1)
总生育酚
Total
tocopherol
(mg kg-1)
1 197.69 ij 377.36 de 575.05 ghi 164.02 m 354.71 g 518.73 k 206.79 fghi 361.08 h 567.87 g
2 184.96 j 375.18 de 560.14 hij 232.13 fg 401.23 d 633.36 fg 195.69 i 372.16 gh 567.85 g
3 218.27 ef 397.18 cd 615.45 ef 240.60 de 400.50 d 641.10 ef 219.00 def 430.42 de 649.42 cd
4 218.16 ef 422.10 b 640.27 de 221.67 hi 429.80 b 651.47 de 221.44 de 426.68 de 648.12 cd
5 231.89 de 415.11 bc 647.00 de 232.15 fg 425.47 b 657.61 d 274.81 b 447.20 c 722.01 b
6 227.20 def 414.86 bc 642.06 de 197.40 kl 477.07 a 674.47 c 228.93 d 486.47 b 715.39 b
7 285.93 a 396.66 cd 682.58 bc 250.36 bc 430.78 b 681.14 c 246.89 c 416.81 e 663.70 c
8 223.74 ef 413.52 bc 637.26 de 219.37 i 422.28 bc 641.66 ef 218.94 def 437.86 cd 656.80 cd
9 164.56 k 363.80 e 528.35 j 192.36 l 371.40 f 563.75 j 201.77 ghi 369.34 gh 571.11 g
10 216.04 fg 358.97 e 575.00 ghi 246.64 cd 412.42 c 659.06 d 254.12 c 381.53 fg 635.65 de
11 202.44 ghi 365.54 e 567.97 ghi 227.12 gh 386.69 e 613.81 h 209.55 efgh 391.70 f 601.25 f
12 214.39 fgh 378.89 de 593.27 fgh 278.64 a 474.53 a 753.17 a 288.62 a 484.82 b 773.44 a
13 239.57 cd 311.81 f 551.38 ij 204.56 j 348.62 g 553.18 j 251.15 c 317.43 i 568.58 g
14 264.68 b 426.24 b 690.92 b 226.63 gh 394.08 de 620.71 gh 196.64 hi 363.54 h 560.18 g
15 198.57 ij 361.45 e 560.02 hij 253.28 b 426.16 b 679.44 c 224.66 d 391.63 f 616.29 ef
16 246.81 c 492.88 a 739.69 a 236.81 ef 475.86 a 712.67 b 257.69 c 528.87 a 786.56 a
17 201.10 hi 397.19 cd 598.29 fg 202.35 jk 431.75 b 634.10 fg 206.36 fghi 451.64 c 658.00 cd
18 227.31 def 425.02 b 652.34 cd 203.85 jk 393.52 de 597.37 i 211.14 efg 432.72 d 643.86 cd
Mean 220.18 394.10 614.28 223.89 414.27 638.16 228.57 416.22 644.78

图3

三试点18个油菜品种菜籽油抗氧化能力 最小显著差异(LSD)法进行多重比较, 柱上不同小写字母表示处理间差异达显著水平(P < 0.05)。"

表7

不同品种、试点的菜籽油品质差异"

品种/试点
Variety/location
CHL
(mg kg-1)
R Y OA
(%)
LA
(%)
LNA
(%)
TPP
(mg kg-1)
PS
(mg kg-1)
Toc
(mg kg-1)
DPPH
(μmol
100 g-1)
FRAP
(μmol
100 g-1)
1 0.52 b 2.33 ef 38.83 a 66.36 c 18.17 g 8.20 h 30.47 ab 7397.50 ef 553.88 h 39.23 c 98.02 b
2 0.10 k 2.15 fg 25.03 ef 65.52 d 18.44 ef 8.94 e 24.69 cd 8047.22 bc 587.12 g 23.10 j 84.33 de
3 0.20 j 2.25 efg 23.67 f 62.45 h 19.26 c 9.18 c 25.86 c 7764.52 cde 635.32 de 44.04 a 84.30 de
4 0.45 e 2.73 ab 24.05 f 61.10 j 19.52 b 9.31 b 24.05 cd 6699.39 ij 646.62 d 24.66 i 85.14 d
5 0.47 de 2.63 abcd 24.33 f 62.61 g 19.43 b 9.08 d 22.33 d 7497.82 def 675.54 c 24.96 i 91.97 c
6 0.37 fg 2.47 bcde 25.22 ef 59.75 k 18.51 e 9.93 a 30.08 ab 7206.94 fgh 677.31 c 34.34 d 102.35 a
7 0.64 a 2.22 efg 27.18 de 62.42 h 21.38 a 9.09 d 11.94 f 8832.63 a 675.81 c 17.65 l 67.86 g
8 0.25 i 2.02 g 24.00 f 65.23 e 18.34 f 9.19 c 30.13 ab 6478.56 j 645.24 d 31.14 f 90.68 c
9 0.50 bc 2.65 abcd 30.00 c 66.31 c 16.66 j 8.99 e 30.13 ab 7342.94 efg 554.4 h 33.66 d 100.06 ab
10 0.51 bc 2.17 fg 25.75 ef 62.14 i 17.49 h 9.10 d 22.77 d 6853.82 hij 623.24 ef 28.39 g 92.06 c
11 0.31 h 2.38 def 27.00 de 67.44 a 16.75 j 8.22 h 29.74 ab 7681.37 cde 594.35 g 32.53 e 101.66 a
12 0.32 h 2.67 abc 39.50 a 65.21 e 18.55 e 8.54 f 31.70 a 7185.17 fgh 706.63 b 42.64 b 102.65 a
13 0.49 cd 2.87 a 25.00 ef 66.35 c 17.02 i 8.39 g 16.40 e 6808.29 hij 557.72 h 20.00 k 73.88 f
14 0.35 g 2.38 def 29.50 cd 65.55 d 18.31 f 8.55 f 31.25 ab 8196.24 b 623.94 ef 27.72 g 84.88 d
15 0.39 f 2.43 cdef 27.00 de 66.89 b 17.62 h 7.78 i 28.56 b 6515.82 j 618.59 f 24.86 i 91.79 c
16 0.50 bc 2.77 a 34.17 b 67.01 b 17.12 i 7.66 j 24.20 cd 6452.43 j 746.31 a 24.33 i 93.43 c
17 0.49 cd 2.17 fg 30.00 c 63.83 f 19.10 d 9.18 c 15.76 e 7856.88 bcd 630.13 ef 13.50 m 69.55 g
18 0.25 i 2.25 efg 27.33 de 66.46 c 17.16 i 9.07 d 23.51 cd 6953.61 ghi 631.19 ef 26.53 h 81.48 e
四川Sichuan 0.32 c 2.55 a 32.09 a 65.72 a 17.68 c 8.80 b 38.76 a 8524.00 a 614.28 c 48.50 a 121.11 a
湖北Hubei 0.46 a 2.55 a 26.36 b 63.39 c 18.84 a 9.15 a 25.50 b 7230.65 b 638.16 b 16.65 c 98.53 b
浙江Zhejiang 0.41 b 2.16 b 26.14 b 64.66 b 18.28 b 8.45 c 11.33 c 6207.21 c 644.78 a 20.40 b 46.38 c

图4

油菜籽含油量、出油效率和菜籽油理化特性、抗氧化能力、功能性成分的主成分分析 缩写同表2。"

图5

三试点主要气候因子与油菜籽含油量、出油效率和菜籽油抗氧化能力、功能性成分的相关性 DMT: 日均温; RF: 降雨量; SR: 太阳辐射量, 其他缩写同表2。*表示P < 0.05, **表示P < 0.01。"

[1] 张婧妤, 许本波, 郑家喜. 我国食用植物油消费变化分析及改革对策. 中国油脂, 2022, 47(3): 5-10.
Zhang J Y, Xu B B, Zheng J X. Analysis on consumption changes and reform countermeasures of edible vegetable oil in China. China Oils Fats, 2022, 47(3): 5-10 (in Chinese with English abstract).
[2] 刘成, 赵丽佳, 唐晶, 杨雪, 吴丽丽, 彭雄, 冯中朝. 中美贸易冲突背景下中国油菜产业发展问题探索. 中国油脂, 2019, 44(9): 1-6.
Liu C, Zhao L J, Tang J, Yang X, Wu L L, Peng X, Feng Z C. Development of China’s rapeseed industry under the background of Sino-US trade conflicts. China Oils Fats, 2019, 44(9): 1-6. (in Chinese with English abstract)
[3] 熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄. 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良. 中国粮油学报, 2014, 29(6): 122-128.
Xiong Q F, Zhang X M, Wen J, Li X H, Fu Y D, Shen J X. Comparation of nutritional values between rapeseed Oil and several other edible vegetable oils: discussion of rapeseed quality genetic improvement. J Chin Cereals Oil Ass, 2014, 29(6): 122-128. (in Chinese with English abstract)
[4] Li Y D, Zhang L, Xu Y J, Li J W, Cao P R, Liu Y F. Evaluation of the functional quality of rapeseed oil obtained by different extraction processes in a Sprague-Dawley rat model. Food Funct, 2019, 10: 6503-6516.
doi: 10.1039/c9fo01592b pmid: 31536073
[5] Chew S C. Cold-pressed rapeseed (Brassica napus) oil: chemistry and functionality. Food Res Int, 2020, 131: 108997.
doi: 10.1016/j.foodres.2020.108997
[6] Khattab R, Goldberg E, Lin L, Thiyam U. Quantitative analysis and free-radical-scavenging activity of chlorophyll, phytic acid, and condensed tannins in canola. Food Chem, 2010, 122: 1266-1272.
doi: 10.1016/j.foodchem.2010.03.081
[7] Hannoufa A, Pillai B V, Chellamma S. Genetic enhancement of Brassica napus seed quality. Transgenic Res, 2014, 23: 39-52.
doi: 10.1007/s11248-013-9742-3
[8] 汪雪芳. 油菜籽叶绿素测定方法研究及应用. 华中农业大学硕士学位论文,湖北武汉, 2008.
Wang X F. Study on Chlorophyll Content Determination and Application in Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2008. (in Chinese with English abstract)
[9] 段文学, 张海燕, 解备涛, 汪宝卿, 张立明. 甘薯苗期耐盐性鉴定及其指标筛选. 作物学报, 2018, 44: 1237-1247.
doi: 10.3724/SP.J.1006.2018.01237
Duan W X, Zhang H Y, Xie B T, Wang B Q, Zhang L M. Identification of salt tolerance and screening for its indicators in sweet potato varieties during seedling stage. Acta Agron Sin, 2018, 44: 1237-1247. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01237
[10] 朱锐, 李祥慧, 易阳. 菜籽油品质多样性与红外光谱特征的研究. 中国油脂, 2022, 47(11): 126-135.
Zhu R, Li X H, Yi Y. Study on the quality diversity and fourier transform infrared spectroscopic features of rapeseed oils. China Oils Fats, 2022, 47(11): 126-135 (in Chinese with English abstract).
[11] Szydłowska-Czerniak A, Tułodziecka A. Antioxidant capacity of rapeseed extracts obtained by conventional and ultrasound- assisted extraction. J Am Oil Chem Soc, 2014, 91: 2011-2019.
pmid: 25431498
[12] Xu Y J, Jiang F, Song J G, Yang X Y, Shu N X, Yuan L Y, Tan C P, Liu Y F. Understanding of the role of pretreatment methods on rapeseed oil from the perspective of phenolic compounds. J Agric Food Chem, 2020, 68: 8847-8854.
doi: 10.1021/acs.jafc.0c03539
[13] Sikorska E, Wójcicki K, Kozak W, Gliszczyńska-Świgło A, Khmelinskii I, Górecki T, Caponio F, Paradiso V M, Summo C, Pasqualone A. Front-face fluorescence spectroscopy and chemometrics for quality control of cold-pressed rapeseed oil during storage. Foods, 2019, 8: 665-680.
doi: 10.3390/foods8120665
[14] 刘光宪, 冯健雄, 闵华, 王强, 熊慧薇, 祝水兰, 雷颂. 冷榨制油技术研究进展. 江西农业学报, 2009, 21(12): 134-136.
Liu G X, Feng J X, Min H, Wang Q, Xiong H W, Zhu S L, Lei S. Research advance in cold pressed extraction of oil. Acta Agric Jiangxi, 2009, 21(12): 134-136 (in Chinese with English abstract).
[15] 马珍珍, 李加纳, Wittkop B, Frauen M, 阎星颖, 刘列钊, 肖阳. 甘蓝型油菜籽粒含油量、蛋白质、纤维素及半纤维素含量QTL分析. 作物学报, 2013, 39: 1214-1222.
doi: 10.3724/SP.J.1006.2013.01214
Ma Z Z, Li J N, Wittkop B, Frauen M, Yan X Y, Liu L Z, Xiao Y. QTL mapping for oil, protein, cellulose and hemicellulose contents in seeds of Brassica napus L. Acta Agron Sin, 2013, 39: 1214-1222. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01214
[16] 左青松, 黄海东, 曹石, 杨士芬, 廖庆喜, 冷锁虎, 吴江生, 周广生. 不同收获时期对油菜机械收获损失率及籽粒品质的影响. 作物学报, 2014, 40: 650-656.
doi: 10.3724/SP.J.1006.2014.00650
Zuo Q S, Huang H D, Cao S, Yang S F, Liao Q X, Leng S H, Wu J S, Zhou G S. Effects of harvesting date on yield loss percentage of mechanical harvesting and seed quality in rapeseed. Acta Agron Sin, 2014, 40: 650-656. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00650
[17] 范媛, 王玉, 李振岚, 王世让, 于殿宇. 冷榨法制取南瓜籽油的研究. 粮油加工, 2010, (11): 27-29.
Fan Y, Wang Y, Li Z L, Wang S R, Yu D Y. Study on the production of pumpkin seed oil by cold pressing. Cereals Oils Proc, 2010, (11): 27-29. (in Chinese)
[18] Li X, Yang R N, Lyu C L, Chen L, Zhang L X, Ding X X, Zhang W, Zhang Q, Hu C D, Li P W. Effect of chlorophyll on lipid oxidation of rapeseed oil. Eur J Lipid Sci Technol, 2019, 121: 1800078.
doi: 10.1002/ejlt.v121.4
[19] 陈萌. 微波预处理油菜籽对压榨饼浸出油品质的影响. 华中农业大学硕士学位论文,湖北武汉, 2013.
Chen M. Effects of Microwave Pretreatment of Rapeseed on Quality of Oil Extracted by Solvent from Meal. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013. (in Chinese with English abstract)
[20] 于坤, 禹晓, 程晨, 陈鹏, 郑畅. 制油工艺对亚麻籽油品质及脂质伴随物含量的影响. 食品科学, 2020, 41(16): 233-243.
Yu K, Yu X, Cheng C, Chen P, Zheng C. Effects of processing techniques on the quality properties and lipid concomitants of flaxseed oil. Food Sci, 2020, 41(16): 233-243. (in Chinese with English abstract)
[21] Yang M, Zheng C, Zhou Q, Huang F H, Liu C S, Wang H. Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. J Food Compos Anal, 2013, 29: 1-9.
doi: 10.1016/j.jfca.2012.08.009
[22] 黄颖, 郑畅, 葛正法, 刘昌盛. 制油工艺对芝麻油脂肪酸和抗氧化物的影响. 食品工业, 2020, 41(8): 43-46.
Huang Y, Zheng C, Ge Z F, Liu C S. Effect of processing technology on fatty acids and antioxidize in sesame oil. Food Ind, 2020, 41(8): 43-46. (in Chinese with English abstract)
[23] Determination of Tocopherols and Tocotrienols in Vegetable Oils and Fats by HPLC (AOCS Official Method Ce 8-89). In: Official Methods and Recommended Practices of the American Oil Chemists’ Society, AOCS Press: Champaign, IL, 1993.
[24] Chen Q, McGillivray D, Wen J, Zhong F, Quek S Y. Co-encapsulation of fish oil with phytosterol esters and limonene by milk proteins. J Food Eng, 2013, 117: 505-512.
doi: 10.1016/j.jfoodeng.2013.01.011
[25] 吴坤, 吴文雄, 杨敏敏, 刘红艳, 郝国存, 赵应忠. 白芝麻籽粒油脂、蛋白质及芝麻素含量QTL定位分析. 作物学报, 2017, 43: 1003-1011.
Wu K, Wu W X, Yang M M, Liu H Y, Hao G C, Zhao Y Z. QTL mapping for oil, protein and sesamin contents in seeds of white sesame. Acta Agron Sin, 2017, 43: 1003-1011. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01003
[26] Fu Y, Zhang D, Gleeson M, Zhang Y, Lin B, Hua S, Yu H. Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping. Euphytica, 2017, 213: 17.
doi: 10.1007/s10681-016-1817-9
[27] McGlew K, Shaw V, Zhang M, Kim R, Yang W, Shorrosh B, Ohlrogge J. An annotated database of Arabidopsis mutants of acyl lipid metabolism. Plant Cell Rep, 2015, 34: 519-532.
[28] Mizera Č, Herak D, Hrabě P, Kabutey A. Extraction of oil from rapeseed using duo screw press. Agric Res, 2018. 16: 1118-1123.
[29] Bogaert L, Mathieu H, Mhemdi H, Vorobiev E. Characterization of oilseeds mechanical expression in an instrumented pilot screw press. Ind Crop Prod, 2018, 121: 106-113.
doi: 10.1016/j.indcrop.2018.04.039
[30] Borges T H, Pereira J A, Cabrera-Viqu C, Lara L, Oliveira A F, Seiquer I. Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chem, 2017, 215: 454-462.
doi: 10.1016/j.foodchem.2016.07.162 pmid: 27542498
[31] Moyano M J, Meléndez-Martínez A J, Alba J, Heredia F J. A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (II): CIELUV and CIELAB uniform colour spaces. Food Res Int, 2008, 41: 513-521.
doi: 10.1016/j.foodres.2008.03.006
[32] 李培武, 杨湄, 张文, 陈洪, 谢立华, 李光明, 丁小霞, 汪雪芳. 我国油菜产品质量安全现状及对策. 中国油料作物学报, 2004, 26: 84-88.
Li P W, Yang M, Zhang W, Chen H, Xie L H, Li G M, Ding X X, Wang X F. Studies on quality of oilseed rape products and its improvement strategy in China. Chin J Oil Crop Sci, 2004, 26: 84-88. (in Chinese with English abstract)
[33] Patel A, Desai S S, Mane V K, Enman J, Rova U, Christakopoulos P, Matsakas L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci Technol, 2022, 120: 140-153.
doi: 10.1016/j.tifs.2022.01.006
[34] 周润松, 何荣, 鞠兴荣, 王博, 吴莹, 徐斐然, 章铖, 宋新阳. 脱臭工艺对菜籽油品质及抗氧化性的影响. 粮食科技与经济, 2017, 42(6): 63-67.
Zhou R S, He R, Ju X R, Wang B, Wu Y, Xu F R, Zhang C, Song X Y. Effect of deodorisation process on quality and antioxidant properties of rapeseed oil. Food Sci Technol Econ, 2017, 42(6): 63-67. (in Chinese)
[35] 张瑶, 吴邦富, 吕昕, 谢亚, 陈洪, 魏芳. 油料作物中特异性脂类伴随物及其分析方法研究进展. 中国油料作物学报, 2021, 43: 530-541.
Zhang Y, Wu B F, Lyu X, Xie Y, Chen H, Wei F. Research progress on specific lipid companions and analytical methods in oil crops. Chin J Oil Crop Sci, 2021, 43: 530-541. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2020134
[36] 马芝丽, 陈文超, 祝香芝, 黄凤洪, 邓乾春, 万霞. 油菜籽来源抗氧化物质研究进展. 中国油料作物学报, 2019, 41: 998-1006.
Ma Z L, Chen W C, Zhu X Z, Huang F H, Deng Q C, Wan X. Review on antioxidant components from rapeseed. Chin J Oil Crop Sci, 2019, 41: 998-1006. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019073
[37] Figueiredo L D, Bonafe E G, Martins J G, Martins A F, Maruyama S A, Santos Junior O, Visentainer J V. Development of an ultrasound assisted method for determination of phytosterols in vegetable oil. Food Chem, 2018, 240: 441-447.
doi: S0308-8146(17)31294-3 pmid: 28946296
[38] Hamama A A, Bhardwaj H L, Starner D E. Genotype and growing location effects on phytosterols in canola oil. J Am Oil Chem Soc, 2003, 80: 1121-1126.
doi: 10.1007/s11746-003-0829-3
[39] Vlahakis C, Hazebroek J. Phytosterol accumulation in canola, sunflower, and soybean oils: effects of genetics, planting location, and temperature. J Am Oil Chem Soc, 2000, 77: 49-53.
doi: 10.1007/s11746-000-0008-6
[40] Marwede V, Schierholt A, Möllers C, Becker H C. Genotype× environment interactions and heritability of tocopherol contents in canola. Crop Sci, 2004, 44: 728-731.
doi: 10.2135/cropsci2004.7280
[1] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[2] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[3] 刘秋霞, 董二伟, 黄晓磊, 王劲松, 王媛, 焦晓燕. 不同生态区高粱籽粒产量和品质对氮肥施用的响应[J]. 作物学报, 2023, 49(10): 2766-2776.
[4] 马骊, 白静, 赵玉红, 孙柏林, 侯献飞, 方彦, 王旺田, 蒲媛媛, 刘丽君, 徐佳, 陶肖蕾, 孙万仓, 武军艳. 冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析[J]. 作物学报, 2023, 49(1): 153-166.
[5] 严威凯. 品种选育与评价的原理和方法评述[J]. 作物学报, 2022, 48(9): 2137-2154.
[6] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[7] 李静,闫金垚,胡文诗,李小坤,丛日环,任涛,鲁剑巍. 氮钾配施对油菜产量及氮素利用的影响[J]. 作物学报, 2019, 45(6): 941-948.
[8] 王旭虹,李鸣晓,张群,金峰,马秀芳,姜树坤,徐正进,陈温福. 籼型血缘对籼粳稻杂交后代产量和加工及外观品质的影响[J]. 作物学报, 2019, 45(4): 538-545.
[9] 米超,赵艳宁,刘自刚,陈其鲜,孙万仓,方彦,李学才,武军艳. 白菜型冬油菜RuBisCo蛋白亚基基因rbcLrbcS的克隆及其在干旱胁迫下的表达[J]. 作物学报, 2018, 44(12): 1882-1890.
[10] 方雅洁,朱亚军,吴志超,陈凯,申聪聪,石英尧,徐建龙. 全基因组关联定位籼稻种质资源外观和加工品质QTL[J]. 作物学报, 2018, 44(01): 32-42.
[11] 方彦,孙万仓,武军艳,刘自刚,董云,米超,马骊,陈奇,何辉立. 北方白菜型冬油菜的膜脂脂肪酸组分和ATPase活性对温度的响应[J]. 作物学报, 2018, 44(01): 95-104.
[12] 马骊,袁金海,孙万仓,刘自刚,曾秀存,武军艳,方彦,李学才,陈奇,许耀照,蒲媛媛,刘海卿,杨刚,刘林波. 白菜型冬油菜类甜蛋白的筛选、克隆及其在低温胁迫下的表达[J]. 作物学报, 2017, 43(04): 620-628.
[13] 许耀照,曾秀存,张芬琴,孙佳,孙万仓,武军艳,方彦,刘自刚,孙柏林. 白菜型冬油菜叶片结构和光合特性对冬前低温的响应[J]. 作物学报, 2017, 43(03): 432-441.
[14] 柴建芳*,王海波*,马秀英,张翠绵,董福双. ω-黑麦碱基因沉默对小麦1B/1R易位系加工品质的影响[J]. 作物学报, 2016, 42(05): 627-632.
[15] 张平平,马鸿翔*,姚金保,周淼平,张鹏. 高分子量谷蛋白单亚基缺失对软质小麦宁麦9号加工品质的影响[J]. 作物学报, 2016, 42(05): 633-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .