欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1172-1180.doi: 10.3724/SP.J.1006.2024.34167

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉重组自交系再生能力和遗传转化效率筛选

乐愉(), 王涛, 张献龙, 林忠旭*()   

  1. 华中农业大学植物科学技术学院 / 作物遗传改良全国重点实验室, 湖北武汉 430070
  • 收稿日期:2023-10-16 接受日期:2024-01-12 出版日期:2024-05-12 网络出版日期:2024-02-07
  • 通讯作者: 林忠旭, E-mail: linzhongxu@mail.hzau.edu.cn
  • 作者简介:E-mail: leyu_hzau@163.com
  • 基金资助:
    国家自然科学基金项目(32172025)

Screening of regeneration capacity and genetic transformation efficiency in recombinant inbred lines of Gossypium hirsutum L.

LE Yu(), WANG Tao, ZHANG Xian-Long, LIN Zhong-Xu*()   

  1. College of Plant Science & Technology, Huazhong Agricultural University / National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, Hubei, China
  • Received:2023-10-16 Accepted:2024-01-12 Published:2024-05-12 Published online:2024-02-07
  • Contact: E-mail: linzhongxu@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32172025)

摘要:

转基因工程育种是棉花种质创新的有效手段, 为了拓展陆地棉可再生基因型, 丰富棉花转基因受体, 本研究以湖北省高产阔叶棉品种‘鄂棉22’ (E22)为母本、高再生能力的鸡脚叶品种‘豫早1号’ (YZ1)为父本, 通过单籽传法构建了F9重组自交系群体(YE); 利用棉花中比较成熟的IBA+KT (IK)和2,4-D+KT (DK) 2种不同激素组合的培养体系, 分别对重组自交系群体的164个家系的愈伤组织诱导率(CIF)、愈伤组织继代繁殖力(CSC)、愈伤组织的出胚率(CRE)以及愈伤组织出胚时间(CET)进行比较, 共获得12个可再生的阔叶棉家系; 利用目前成熟的棉花遗传转化体系对可再生阔叶棉家系进行遗传转化效率分析, 同时对其进行田间农艺性状考察, 最终获得了一个遗传转化效率为82.9%并且农艺性状更优良的家系YE3。本研究为棉花的遗传转化及基因功能研究拓展了陆地棉基因型种质资源。

关键词: 棉花, 重组自交系, 体细胞胚胎发生, 再生能力, 遗传转化效率

Abstract:

Transgenic engineered breeding is an effective way of cotton germplasm innovations. In order to expand the renewable genotypes of upland cotton and to enrich cotton transgenic receptors, we constructed an F9 recombinant inbred population (YE) by the single-seed descent method using the high-yielding broad leaf cotton variety Emian 22 (E22) from Hubei province as the male parent and the high regeneration-capable okra leaf variety Yuzao 1 (YZ1) as the female parent. We compared the callus induction rate (CIF), callus secondary fecundity (CSC), embryo rate of callus (CRE), and callus embryo time (CET) of 164 recombinant inbred lines using two different hormone combinations of IBA+KT (IK) and 2,4-D+KT (DK), respectively, which were mature tissue culture systems in cotton. A total of 12 regenerable broad leaf lines were obtained and evaluated for the genetic transformation efficiency using the current mature genetic transformation system in cotton; meanwhile, agronomic traits of these lines were investigated. Finally, a family line YE3, with a genetic transformation efficiency of 82.9% and better agronomic traits, was obtained. This study develops a new genotype of upland cotton, which will facilitate the genetic transformation and gene function research of cotton.

Key words: cotton, RILs, somatic embryogenesis, regeneration capacity, transformation efficiency

图1

IK体系下棉花体细胞胚胎发生和植株再生流程 A: 棉花下胚轴; B: 1~2个月的愈伤组织; C: 胚性愈伤组织, 伴有子叶型胚状体; D: 大量胚状体形成; E: 植株再生; F: 水培后可移栽。"

图2

DK体系下棉花体细胞胚胎发生和植株再生流程 A: 棉花下胚轴; B: 1~2个月的愈伤组织; C: 胚性愈伤组织, 无胚状体; D: 大量胚状体形成; E: 植株再生; F: 水培后可移栽。"

图3

IK和DK体系下愈伤组织增殖的频率分布图 CSC: 愈伤组织继代繁殖力。"

图4

IK和DK体系下可出胚家系再生相关性状的频率分布图 A: CET, 愈伤组织最早出现的时间; B: CRE, 愈伤组织出胚率。"

表1

再生YE家系CSC、CRE和CET比较"

家系a
Lines a
叶形
Shape of leaves
培养体系b
Culture system b
愈伤组织继代繁殖力
CSC (g)
愈伤组织出胚率CRE (%) 愈伤组织出胚时间
CET (d)
90 d 180 d
E22 阔叶
Broad leaf
IBA+KT 3.03 0 0 -
2,4-D+KT 5.56 - 33.3 189
YZ1 鸡脚叶
Okra leaf
IBA+KT 4.14 70 75 70
2,4-D+KT 4.51 67.5 100 61
YE1 鸡脚叶
Okra leaf
IBA+KT 3.70 56.25 100 70
2,4-D+KT 5.34 25 100 80
YE3 阔叶
Broad leaf
IBA+KT 2.80 50 100 67
2,4-D+KT 4.23 37.5 100 80
YE20 鸡脚叶
Okra leaf
IBA+KT 4.62 45.83 100 85
2,4-D+KT 4.83 37.5 85 87
YE21 阔叶
Broad leaf
IBA+KT 4.93 37.5 100 80
2,4-D+KT 4.37 29.17 100 87
YE22 阔叶
Broad leaf
IBA+KT 3.98 45.83 100 90
2,4-D+KT 6.02 37.5 100 90
YE32 鸡脚叶
Okra leaf
IBA+KT 4.00 33.33 100 75
2,4-D+KT 4.46 - 100 95
YE33 阔叶
Broad leaf
IBA+KT 3.92 31.25 67 70
2,4-D+KT 7.28 - 100 102
YE38 阔叶
Broad leaf
IBA+KT 3.48 42.5 100 67
2,4-D+KT 6.26 50 100 80
YE54 阔叶
Broad leaf
IBA+KT 4.77 43.75 67 75
2,4-D+KT 4.46 - 67 130
YE81 阔叶
Broad leaf
IBA+KT 3.94 25 50 80
2,4-D+KT 5.24 - 67 154
YE86 阔叶
Broad leaf
IBA+KT 3.74 67.5 100 80
2,4-D+KT 3.88 67.5 100 80
YE87 阔叶
Broad leaf
IBA+KT 4.23 50 100 69
2,4-D+KT 4.84 50 100 85
YE108 鸡脚叶
Okra leaf
IBA+KT 4.74 81.25 67 80
2,4-D+KT 5.03 37.5 67.5 80
YE110 鸡脚叶
Okra leaf
IBA+KT 5.01 43.75 50 71
2,4-D+KT 3.66 37.5 100 75
YE111 阔叶
Broad leaf
IBA+KT 3.58 60 100 69
2,4-D+KT 4.53 50 67.5 86
YE120 鸡脚叶
Okra leaf
IBA+KT 3.62 31.25 67 80
2,4-D+KT 4.88 37.5 100 80
YE122 鸡脚叶
Okra leaf
IBA+KT 3.86 70.83 100 69
2,4-D+KT 5.60 50 100 85
YE127 鸡脚叶
Okra leaf
IBA+KT 3.22 43.75 100 67
2,4-D+KT 5.76 - 100 95
YE130 鸡脚叶
Okra leaf
IBA+KT 5.42 84.38 100 69
2,4-D+KT 5.53 41.67 100 79
YE137 鸡脚叶
Okra leaf
IBA+KT 5.42 - 25 110
2,4-D+KT 5.53 31.25 67 90
YE138 阔叶
Broad leaf
IBA+KT 4.51 56.25 67 67
2,4-D+KT 7.44 - 67.7 130
YE142 阔叶
Broad leaf
IBA+KT 5.68 - 75 116
2,4-D+KT 5.13 - 67.7 154
YE144 鸡脚叶
Okra leaf
IBA+KT 5.19 - 25 110
2,4-D+KT 5.75 - 67 154
YE148 鸡脚叶
Okra leaf
IBA+KT 3.81 50 100 78
2,4-D+KT 3.81 37.5 100 75
YE164 鸡脚叶
Okra leaf
IBA+KT 3.24 62.5 67 71
2,4-D+KT 5.31 37.5 100 75

图5

部分再生植株"

图6

YE3转基因植株阳性鉴定 A和E: 胚性愈伤组织; B和F: 体细胞胚; C、G、D和F: 叶片; 标尺为1000 μm。"

表2

12个可再生阔叶家系农艺性状考察"

家系a
Lines a
纤维长度
Fiber length (mm)
纤维强度
Fiber strength
(g tex-1)
马克隆值
Micronaire
(μg Inch-1)
整齐度
Uniformity index
(%)
伸长率
Elongation rate
(%)
衣分
Lint percentage
(%)
E22 26.37±2.19 28.27±2.57 5.84±0.45 84.36±1.42 6.64±0.14 43.72±0.02
YZ1 27.01±2.51 25.63±1.61 5.83±0.16 86.02±2.67 6.57±0.23 35.43±0.05
YE3 27.89±1.37 28.76±0.55 5.57±0.36 86.39±1.15 6.72±0.07 40.53±0.02
YE21 27.05±0.80 28.71±1.63 6.14±0.12 86.79±2.28 6.67±0.12 40.84±0.02
YE22 25.95±1.44 27.18±2.66 5.90±0.25 84.83±2.34 6.56±0.15 39.78±0.04
YE33 27.19±2.00 26.29±1.89 5.84±0.33 85.54±1.78 6.57±0.15 39.93±0.01
YE38 26.67±1.34 26.19±2.81 5.37±0.31 85.77±1.57 6.59±0.18 38.87±0.01
YE54 27.33±0.95 28.88±1.23 5.95±0.25 85.78±1.76 6.76±0.13 39.94±0.04
YE81 28.80±0.53 31.20±4.52 5.46±0.26 87.06±0.98 6.72±0.16 35.71±0.00
YE86 26.34±0.46 25.81±1.06 6.05±0.38 85.44±1.58 6.58±0.11 39.13±0.00
YE87 27.36±1.48 28.57±2.30 6.31±0.78 85.59±3.11 6.64±0.10 40.85±0.06
YE111 27.71±1.65 27.06±2.19 5.77±0.21 85.87±1.62 6.76±0.05 39.09±0.02
YE138 27.78±1.80 29.36±3.11 5.59±0.18 86.10±1.49 6.67±0.15 39.45±0.01
YE142 28.05±1.32 27.32±1.92 5.41±0.20 86.64±1.44 6.61±0.16 39.42±0.01
[1] Tanveer K, Siva R V, Sadhu L. High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult, 2010, 101: 323-330.
doi: 10.1007/s11240-010-9691-y
[2] Price H J, Roberta H S. Somatic embryogenesis in suspension cultures of Gossypium klotzschianum anderss. Planta, 1979, 145: 305-307.
doi: 10.1007/BF00454456 pmid: 24317738
[3] Davidonis G H, Hamilton R H. Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett, 1983, 32: 89-93.
doi: 10.1016/0304-4211(83)90102-5
[4] Kumar S, Pental D. Regeneration of Indian cotton variety MCU-5 through somatic embryogenesis. Curr Sci, 1998, 74: 538-540.
[5] Kumria R, Sunnichan V G, Das D K, Gupta S K, Reddy V S, Bhatnagar R K, Leelavathi S. High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep, 2003, 21: 635-639.
pmid: 12789412
[6] Rauf S, Hafeez-ur-Rahman. A study of in vitro regeneration in relation to doses of growth regulators in hybrids of upland cotton. Plant Cell Tissue Organ Cult, 2005, 83: 209-215.
doi: 10.1007/s11240-005-5770-x
[7] Jin S X, Zhang X L, Nie Y C, Guo X P, Liang S G, Zhu H G. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant, 2006, 50: 519-524.
doi: 10.1007/s10535-006-0082-5
[8] 陈天子, 吴慎杰, 李飞飞, 郭旺珍, 张天真.新疆棉花4个主栽品种的体细胞胚胎发生及植株再生. 作物学报, 2008, 34: 1374-1380.
Chen T Z, Wu S J, Li F F, Guo W Z, Zhang T Z. In vitro regeneration of four commercial cotton (Gossypium hirsutum L.) cultivars grown in Xinjiang, China. Acta Agron Sin, 2008, 34: 1374-1380 (in Chinese with English abstract).
[9] 葛书娅, 沈秋平, 何积明, 吕尊富, 郑海彪, 李飞飞.陆地棉新陆早45号体细胞胚胎发生及再生体系的建立. 作物学报, 2018, 30: 492-497.
Ge S Y, Shen Q P, He J M, Lyu Z F, Zheng H B, Li F F. A regeneration system for cotton variety Xinluzao 45 via somatic embryogenesis. Acta Agron Sin, 2018, 30: 492-497 (in Chinese with English abstract).
[10] 罗晓丽, 姜艳丽, 肖娟丽, 武宗信, 张安红, 王志安, 吴家和.早熟棉体细胞胚胎发生和植株再生体系的建立. 西北植物学报, 2011, 31: 609-615.
Luo X L, Jiang Y L, Xiao J L, Wu Z X, Zhang A H, Wang Z A, Wu J H. Establishment of somatic cell embryogenesis and plant regeneration system of early cotton. Acta Bot Boreali-Occident Sin, 2011, 31: 609-615 (in Chinese with English abstract).
[11] 王永芳, 刁现民. 植物再生相关基因的QTL定位及克隆应用研究进展. 河北农业科学, 2010, 14(11): 85-88.
Wang Y F, Diao X M. Advances of QTL localization and cloning of genes related to regeneration ability of plant tissue culture. J Hebei Agric Sci, 2010, 14(11): 85-88 (in Chinese with English abstract).
[12] 张献龙, 孙济中, 刘金兰.陆地棉体细胞胚胎发生与植株再生. 遗传学报, 1991, 18: 461-467.
Zhang X L, Sun J Z, Liu J L. Somatic embryogenesis and plant regeneration in upland cotton. Acta Genet Sin, 1991, 18: 461-467 (in Chinese with English abstract).
[13] 董合忠. 不同基因型棉花下胚轴离体培养胚状体发生的研究. 莱阳农学院学报, 1991, 8(2):97-101.
Dong H Z. Cotton somatic embryogenesis of different genotypes. J Laiyang Agric Coll, 1991, 8(2): 97-101 (in Chinese with English abstract).
[14] Ge X Y, Xu J T, Yang Z E, Yang X F, Wang Y, Chen Y L, Wang P, Li F G. Efficient genotype-independent cotton genetic transformation and genome editing. J Integr Agric, 2022, 65: 907-917.
[15] Bolibok H, Rakoczy-Trojanowska M. Genetic mapping of QTLs for tissue-culture response in plants. Euphytica, 2006, 149: 73-83.
doi: 10.1007/s10681-005-9055-6
[16] Zhao L N, Zhou H J, Lu L X, Liu L L, Li X H, Lin Y J, Yu S B. Identification of quantitative trait loci controlling rice mature seed culturability using chromosomal segment substitution lines. Plant Cell Rep, 2009, 28: 247-56.
doi: 10.1007/s00299-008-0641-7 pmid: 19023575
[17] Jin S X, Zhang X L, Liang S G, Nie Y C, Guo X P, Huang C. Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult, 2005, 81: 229-237.
doi: 10.1007/s11240-004-5209-9
[18] Li J Y, Wang M J, Li Y J, Zhang Q H, Lindsey K, Daniell H, Jin S X, Zhang X L. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnol J, 2019, 17: 435-450.
doi: 10.1111/pbi.12988 pmid: 29999579
[19] 李雪林, 王翠玲, 孟超敏. 高频体细胞胚胎发生的优异棉花种质材料筛选. 分子植物育种, 2012, 10: 683-688.
Li X L, Wang C L, Meng C M. Screening elite cotton germplasm with high frequency somatic embryogenesis. Mol Plant Breed, 2012, 10: 683-688 (in Chinese with English abstract).
[20] Tsukaya H. Mechanism of leaf-shape determination. Annu Rev Plant Biol, 2006, 57: 477-496.
pmid: 16669771
[21] Wang H F, Kong F J, Zhou C E. From genes to networks: The genetic control of leaf development. J Integr Plant Biol, 2021, 63: 1181-1196.
doi: 10.1111/jipb.13084
[22] Zhu Q H, Zhang J, Liu D X, Stiller W, Liu D J, Zhang Z S, Llewellyn D, Wilson L. Integrated mapping and characterization of the gene underlying the okra leaf trait in Gossypium hirsutum L. J Exp Bot, 2016, 67: 763-774.
doi: 10.1093/jxb/erv494
[23] Gelvin S B. Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet, 2017, 51: 195-217.
doi: 10.1146/genet.2017.51.issue-1
[24] 李静, 张换样, 朱永红, 吴慎杰, 焦改丽. 农杆菌介导棉花遗传转化的影响因素. 南方农业, 2020, 14(8):8-12.
Li J, Zhang H Y, Zhu Y H, Wu S J, Jiao G L. Influencing factors of Agrobacterium tumefaciens-mediated genetic transformation in cotton. South China Agric, 2020, 14(8): 8-12 (in Chinese with English abstract).
[1] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[2] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[3] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[4] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[5] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[6] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[7] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[8] 刘颖超, 方敦煌, 徐海明, 童治军, 肖炳光. 烟草生物碱性状的QTL定位[J]. 作物学报, 2024, 50(1): 42-54.
[9] 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208.
[10] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[11] 刘韬奋, 罗单, 张启鹏, 孙圆圆, 李培松, 田景山, 张旺锋, 向导, 张亚黎, 杨明凤, 勾玲. 乙烯利催熟对机采棉铃重和纤维品质的影响[J]. 作物学报, 2024, 50(1): 209-218.
[12] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[13] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271.
[14] 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038.
[15] 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .