作物学报 ›› 2024, Vol. 50 ›› Issue (5): 1158-1171.doi: 10.3724/SP.J.1006.2024.34110
ZHONG Yuan(), ZHU Tian-Yu, DAI Cheng, MA Chao-Zhi*()
摘要:
在油菜的生产过程中, 大量伴生的杂草严重影响了其产量和品质。由于近年来田间抗除草剂杂草数量的增加, 除草剂的选择正在迅速减少, 这影响了未来农业的可持续发展。植物可以通过正磷酸盐(Pi)转运蛋白吸收亚磷酸盐(Phi), 但Phi不能被代谢为作物的磷肥料, 导致植物生长受到抑制。此前, 从罗尔斯通菌属(Raltsonia sp. strain 4506)中分离出了ptxD (phosphite dehydrogenase)基因, 其139位的酪氨酸突变为谷氨酰胺(Y139Q)的突变蛋白ptxDQ催化Phi转化为Pi的活性显著提高。为了评价ptxDQ/Phi系统对甘蓝型油菜杂草的防治效果, 本研究获得了带有密码子优化的ptxD (Y139Q, ptxDQ)基因的转基因甘蓝型油菜。在以Phi为单一磷元素的条件下, ptxDQ转基因油菜可以正常生长, 体内Pi含量显著提高, 且Pi饥饿响应基因(PT21和PT24等)的表达水平被显著抑制, 说明ptxDQ在油菜体内可以促使Phi转化为Pi。此外, ptxDQ转基因油菜具有比野生型油菜和单子叶杂草(狗尾草)更强的生长竞争优势。综上所述, ptxDQ/Phi是一种有效的油菜磷利用和杂草控制系统, 既可以抑制杂草的生长, 又可以为作物提供充足的Pi营养, 从而提高了农业的可持续性。
[1] |
李利霞, 陈碧云, 闫贵欣, 高桂珍, 许鲲, 谢婷, 张付贵, 伍晓明. 中国油菜种质资源研究利用策略与进展. 植物遗传资源学报, 2020, 21: 1-19.
doi: 10.13430/j.cnki.jpgr.20200109005 |
Li L X, Chen B Y, Yan G X, Gao G Z, Xu K, Xie T, Zhang F G, Wu X M. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China. J Plant Genet Resour, 2020, 21: 1-19 (in Chinese with English abstract). | |
[2] | 敖礼林, 余增钢, 饶卫华. 油菜田杂草综合高效防控技术. 科学种养, 2019, (1): 39-40. |
Ao L L, Yu Z G, Rao W H. Comprehensive and efficient prevention and control technology of weeds in rapeseed fields. Sci Breed, 2019, (1): 39-40 (in Chinese). | |
[3] |
de F Sousa M G, da Silva A C, Dos Santos Araújo R, Rigotto R M. Evaluation of the atmospheric contamination level for the use of herbicide glyphosate in the northeast region of Brazil. Environ Monit Assess, 2019, 191: 604.
doi: 10.1007/s10661-019-7764-x pmid: 31485762 |
[4] |
Heap I, Duke S O. Overview of glyphosate-resistant weeds worldwide. Pest Manag Sci, 2018, 74: 1040-1049.
doi: 10.1002/ps.4760 pmid: 29024306 |
[5] |
Husken A, Dietz-Pfeilstetter A. Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Res, 2007, 16: 557-569.
doi: 10.1007/s11248-007-9078-y |
[6] |
Squire G R, Hawes C, Begg G S, Young M W. Cumulative impact of GM herbicide-tolerant cropping on arable plants assessed through species-based and functional taxonomies. Environ Sci Pollut Res, 2009, 16: 85-94.
doi: 10.1007/s11356-008-0072-6 |
[7] |
Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants:from soil to cell. Plant Physiol, 1998, 116: 447-453.
doi: 10.1104/pp.116.2.447 pmid: 9490752 |
[8] |
Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ou-Yang Y, Zhang Q. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-y pmid: 29487318 |
[9] |
Wang Y, Chen Y F, Wu W H. Potassium and phosphorus transport and signaling in plants. J Integr Plant Biol, 2021, 63: 34-52.
doi: 10.1111/jipb.13053 |
[10] |
Bozzo G G, Singh V K, Plaxton W C. Phosphate or phosphite addition promotes the proteolytic turnover of phosphate- starvation inducible tomato purple acid phosphatase isozymes. FEBS Lett, 2004, 573: 51-54.
doi: 10.1016/j.febslet.2004.07.051 pmid: 15327974 |
[11] |
Eshraghi L, Anderson J P, Aryamanesh N, McComb J A, Shearer B, Hardy G S. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite- mediated resistance stimulates the auxin signalling pathway. BMC Plant Biol, 2014, 14: 68.
doi: 10.1186/1471-2229-14-68 pmid: 24649892 |
[12] |
Kariman K, Barker S J, Jost R, Finnegan P M, Tibbett M. Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations. Mycorrhiza, 2016, 26: 401-415.
doi: 10.1007/s00572-015-0674-z pmid: 26810895 |
[13] |
Burra D D, Berkowitz O, Hedley P E, Morris J, Resjo S, Levander F, Liljeroth E, Andreasson E, Alexandersson E. Phosphite- Induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biol, 2014, 14: 254.
doi: 10.1186/s12870-014-0254-y |
[14] |
Achary V M M, Ram B, Manna M, Datta D, Bhatt A, Reddy M K, Agrawal P K. Phosphite: a novel P fertilizer for weed management and pathogen control. Plant Biotechnol J, 2017, 15: 1493-1508.
doi: 10.1111/pbi.12803 pmid: 28776914 |
[15] |
Danova-Alt R, Dijkema C, DE Waard P, Kock M. Transport and compartmentation of phosphite in higher plant cells: kinetic and 31P nuclear magnetic resonance studies. Plant Cell Environ, 2008, 31: 1510-1521.
doi: 10.1111/pce.2008.31.issue-10 |
[16] |
Thao H T B, Yamakawa T, Myint A K, Sarr P S. Effects of phosphite, a reduced form of phosphate, on the growth and phosphorus nutrition of spinach (Spinacia oleracea L.). Soil Sci Plant Nutr, 2008, 54: 761-768.
doi: 10.1111/j.1747-0765.2008.00290.x |
[17] |
Dormatey R, Sun C, Ali K, Fiaz S, Xu D R, Calderon-Urrea A, Bi Z Z, Zhang J L, Bai J P. ptxD/Phi as alternative selectable marker system for genetic transformation for bio-safety concerns: a review. PeerJ, 2021, 9: e11809.
doi: 10.7717/peerj.11809 |
[18] |
Loera-Quezada M M, Leyva-Gonzalez M A, Lopez-Arredondo D, Herrera-Estrella L. Phosphite cannot be used as a phosphorus source but is non-toxic for microalgae. Plant Sci, 2015, 231: 124-130.
doi: 10.1016/j.plantsci.2014.11.015 pmid: 25575997 |
[19] | Pandeya D, Lopez-Arredondo D L, Janga M R, Campbell L M, Estrella-Hernandez P, Bagavathiannan M V, Herrera-Estrella L, Rathore K S. Selective fertilization with phosphite allows unhindered growth of cotton plants expressing the ptxD gene while suppressing weeds. Proc Natl Acad Sci USA, 2018, 115: E6946-E6955. |
[20] |
Costas A M, White A K, Metcalf W W. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem, 2001, 276: 17429-17436.
doi: 10.1074/jbc.M011764200 pmid: 11278981 |
[21] |
Changko S, Rajakumar P D, Young R E B, Purton S. The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl Microbiol Biotechnol, 2020, 104: 675-686.
doi: 10.1007/s00253-019-10258-7 |
[22] |
Lopez-Arredondo D L, Herrera-Estrella L. Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nat Biotechnol, 2012, 30: 889-893.
doi: 10.1038/nbt.2346 |
[23] |
Nahampun H N, Lopez-Arredondo D, Xu X, Herrera-Estrella L, Wang K. Assessment of ptxD gene as an alternative selectable marker for Agrobacterium-mediated maize transformation. Plant Cell Rep, 2016, 35: 1121-1132.
doi: 10.1007/s00299-016-1942-x |
[24] |
Manna M, Achary M M, Islam T, Agrawal P K, Reddy M K. The development of a phosphite-mediated fertilization and weed control system for rice. Sci Rep, 2016, 6: 24941.
doi: 10.1038/srep24941 pmid: 27109389 |
[25] |
Lopez-Arredondo D L, Herrera-Estrella L. A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism. Plant Biotechnol J, 2013, 11: 516-525.
doi: 10.1111/pbi.2013.11.issue-4 |
[26] |
Pandeya D, Campbell L M, Nunes E, Lopez-Arredondo D L, Janga M R, Herrera-Estrella L, Rathore K S. ptxD gene in combination with phosphite serves as a highly effective selection system to generate transgenic cotton (Gossypium hirsutum L.). Plant Mol Biol, 2017, 95: 567-577.
doi: 10.1007/s11103-017-0670-0 |
[27] |
Liu T T, Yuan L L, Deng S R, Zhang X X, Cai H M, Ding G D, Xu F S, Shi L, Wu G B, Wang C. Improved the activity of phosphite dehydrogenase and its application in plant biotechnology. Front Bioeng Biotechnol, 2021, 9: 764188.
doi: 10.3389/fbioe.2021.764188 |
[28] |
Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Yang B, Yao W, Wang J, Guo L, Lu S. An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breed, 2020, 40: 96.
doi: 10.1007/s11032-020-01174-0 |
[29] |
Carswell C, Grant B R, Theodorou M E, Harris J, Niere J O, Plaxton W C. The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings. Plant Physiol, 1996, 110: 105-110.
pmid: 12226174 |
[30] |
Varadarajan D K, Karthikeyan A S, Matilda P D, Raghothama K G. Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol, 2002, 129: 1232-1240.
doi: 10.1104/pp.010835 pmid: 12114577 |
[31] |
Ren F, Guo Q Q, Chang L L, Chen L, Zhao C Z, Zhong H, Li X B. Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS One, 2012, 7: e44005.
doi: 10.1371/journal.pone.0044005 |
[32] |
Ren F, Zhao C Z, Liu C S, Huang K L, Guo Q Q, Chang L L, Xiong H, Li X B. A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis. Plant Mol Biol, 2014, 86: 595-607.
doi: 10.1007/s11103-014-0249-y |
[33] | Li Y, Wang X, Zhang H, Wang S, Ye X, Shi L, Xu F, Ding G. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. LoS One, 2019, 14: e220374. |
[34] |
Buddenhagen C E, James T K, Ngow Z, Hackell D L, Rolston M P, Chynoweth R J, Gunnarsson M, Li F, Harrington K C, Ghanizadeh H. Resistance to post-emergent herbicides is becoming common for grass weeds on New Zealand wheat and barley farms. PLoS One, 2021, 16: e0258685.
doi: 10.1371/journal.pone.0258685 |
[35] | Green J M, Siehl D L. History and outlook for glyphosate- resistant crops. Rev Environ Contam Toxicol, 2021, 255: 67-91. |
[36] |
Holmes K H, Lindquist J L, Rebarber R, Werle R, Yerka M, Tenhumberg B. Modeling the evolution of herbicide resistance in weed species with a complex life cycle. Ecol Appl, 2022, 32: e02473.
doi: 10.1002/eap.v32.1 |
[37] |
Zabalza A, Orcaray L, Fernandez-Escalada M, Zulet-Gonzalez A, Royuela M. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic Biochem Physiol, 2017, 141: 96-102.
doi: S0048-3575(16)30218-8 pmid: 28911748 |
[38] |
Wakelin A, Preston C. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res, 2006, 46: 432-440.
doi: 10.1111/wre.2006.46.issue-5 |
[39] |
Yu Q, Cairns A, Powles S. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta, 2007, 225: 499-513.
doi: 10.1007/s00425-006-0364-3 |
[40] |
Baerson S R, Rodriguez D J, Tran M, Feng Y, Biest N A, Dill G M. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol, 2002, 129: 1265-1275.
doi: 10.1104/pp.001560 pmid: 12114580 |
[41] |
Sammons R D, Gaines T A. Glyphosate resistance: state of knowledge. Pest Manag Sci, 2014, 70: 1367-1377.
pmid: 25180399 |
[42] |
Gaines T A, Zhang W, Wang D, Bukun B, Chisholm S T, Shaner D L, Nissen S J, Patzoldt W L, Tranel P J, Culpepper A S, Grey T L, Webster T M, Vencill W K, Sammons R D, Jiang J, Preston C, Leach J E, Westra P. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci USA, 2010, 107: 1029-1034.
doi: 10.1073/pnas.0906649107 pmid: 20018685 |
[43] |
Robertson I D, Dean L M, Rudebusch G E, Sottos N R, White S R, Moore J S. Alkyl phosphite inhibitors for frontal ring-opening metathesis polymerization greatly increase pot life. ACS Macro Lett, 2017, 6: 609-612.
doi: 10.1021/acsmacrolett.7b00270 |
[44] |
Mehta D, Ghahremani M, Perez-Fernandez M, Tan M, Schlapfer P, Plaxton W C, Uhrig R G. Phosphate and phosphite have a differential impact on the proteome and phosphoproteome of Arabidopsis suspension cell cultures. Plant J, 021, 105: 924-941.
doi: 10.1111/tpj.v105.4 |
[45] |
Rima F B, da Silva Y, Teixeira M P R, Maia A J, Assis K G O, da Silva R, de Souza Junior V S, da Silva Y, Lopes J W B, Barbosa R S, Singh V P. Phosphorus in soils and fluvial sediments from a Cerrado biome watershed under agricultural expansion. Environ Monit Assess, 2022, 194: 388.
doi: 10.1007/s10661-022-09983-w pmid: 35445983 |
[46] |
Baammi S, Daoud R, El Allali A. Assessing the effect of a series of mutations on the dynamic behavior of phosphite dehydrogenase using molecular docking, molecular dynamics and quantum mechanics/molecular mechanics simulations. J Biomol Struct Dyn, 2023, 41: 4154-4166.
doi: 10.1080/07391102.2022.2064912 |
[47] |
Gonzalez-Morales S I, Pacheco-Gutierrez N B, Ramirez- Rodriguez C A, Brito-Bello A A, Estrella-Hernandez P, Herrera-Estrella L, Lopez-Arredondo D L. Metabolic engineering of phosphite metabolism in Synechococcus elongatus PCC 7942 as an effective measure to control biological contaminants in outdoor raceway ponds. Biotechnol Biofuels, 2020, 13: 119.
doi: 10.1186/s13068-020-01759-z |
[48] |
Sandoval-Vargas J M, Jimenez-Clemente L A, Macedo-Osorio K S, Oliver-Salvador M C, Fernandez-Linares L C, Duran-Figueroa N V, Badillo-Corona J A. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Mol Biotechnol, 2019, 61: 461-468.
doi: 10.1007/s12033-019-00177-3 pmid: 30997667 |
[49] |
Yuan H, Wang Y, Liu Y, Zhang M, Zou Z. A novel dominant selection system for plant transgenics based on phosphite metabolism catalyzed by bacterial alkaline phosphatase. PLoS One, 2021, 16: e0259600.
doi: 10.1371/journal.pone.0259600 |
[50] |
Chavana J, Singh S, Vazquez A, Christoffersen B, Racelis A, Kariyat R R. Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits. Sci Rep, 2021, 11: 6634.
doi: 10.1038/s41598-021-85789-z pmid: 33758235 |
[51] |
Garcia M J, Palma-Bautista C, Rojano-Delgado A M, Bracamonte E, Portugal J, Alcantara-de la Cruz R, De Prado R. The triple amino acid substitution TAP-IVS in the EPSPS gene confers high glyphosate resistance to the superweed Amaranthus hybridus. Int J Mol Sci, 2019, 20: 2396.
doi: 10.3390/ijms20102396 |
[52] |
Scarrow R. Glyphosate resistance: of superweeds and survivors. Nat Plants, 2017, 3: 17078.
doi: 10.1038/nplants.2017.78 pmid: 28504704 |
[1] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[2] | 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029. |
[3] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[4] | 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250. |
[5] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[6] | 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531. |
[7] | 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550. |
[8] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[9] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[10] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[11] | 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925. |
[12] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[13] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[14] | 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331. |
[15] | 李继军, 陈雅慧, 王艺瑾, 周志华, 郭子越, 张建, 涂金星, 姚璇, 郭亮. 甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选[J]. 作物学报, 2023, 49(12): 3162-3175. |
|