作物学报 ›› 2025, Vol. 51 ›› Issue (4): 900-913.doi: 10.3724/SP.J.1006.2025.42040
潘炬忠1(), 韦萍1, 朱德平1, 邵胜雪1, 陈珊珊1, 韦雅倩1, 高维维1,2,3,*(
)
PAN Ju-Zhong1(), WEI Ping1, ZHU De-Ping1, SHAO Sheng-Xue1, CHEN Shan-Shan1, WEI Ya-Qian1, GAO Wei-Wei1,2,3,*(
)
摘要:
乙烯响应因子(ERF)是植物中AP2/ERF转录因子超家族中的成员之一, 在植物的生长发育、响应逆境胁迫和调节激素信号转导等生物学过程中起重要调控作用。探究水稻ERF家族基因功能将为水稻育种提供重要的基因资源。本研究克隆了OsERF104 (LOC_Os08g36920)基因, 利用生物信息学分析发现该基因编码序列全长849 bp, 编码283个氨基酸。OsERF104蛋白含有AP2/ERF转录因子家族特有的AP2保守结构域, 与拟南芥中调控盐胁迫耐受性的AtERF96的蛋白序列相似性最高。亚细胞定位结果显示OsERF104定位于细胞核, 表明OsERF104是典型的核转录因子。OsERF104基因启动子顺式作用元件分析表明, 启动子含有与激素响应、逆境胁迫及光响应相关的顺式作用元件。为了探究OsERF104对非生物胁迫的响应, 利用实时荧光定量PCR (RT-qPCR)技术分析OsERF104的表达模式, 发现OsERF104在水稻不同组织中均有表达, 在叶鞘中的表达量最高, 且该基因的表达受ABA和GA抑制, 受JA、PEG和NaCl诱导。转录活性分析显示该基因全长和C端具有转录自激活活性, N端和AP2结构域不具有转录自激活活性。通过遗传转化获得OsERF104过表达和敲除的突变体转基因水稻。表型分析显示, 与野生型ZH11相比, OsERF104过表达植株对ABA的敏感性及苗期的耐盐性显著增加, oserf104突变体则相反。由此推测, OsERF104正调控水稻对盐胁迫的耐受性。本研究为进一步解析OsERF104的生物学功能及分子机制奠定了良好的基础。
[1] |
牛淑琳, 唐苗苗, 杜晨阳, 王增兰, 谢先芝, 郑崇珂. 稻米品质调控的分子基础及非生物胁迫对稻米品质的影响. 中国稻米, 2022, 28(3): 10-19.
doi: 10.3969/j.issn.1006-8082.2022.03.003 |
Niu S L, Tang M M, Du C Y, Wang Z L, Xie X Z, Zheng C K. Molecular bases of rice quality regulation and effects of abiotic stress on rice quality. China Rice, 2022, 28(3): 10-19 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2022.03.003 |
|
[2] | Guo H, Wang R, Garfin G M, Zhang A Y, Lin D G, Liang Q O, Wang J A. Rice drought risk assessment under climate change: based on physical vulnerability a quantitative assessment method. Sci Total Environ, 2021, 751: 141481. |
[3] | Xie Z Z, Jin L, Sun Y, Zhan C H, Tang S Q, Qin T, Liu N, Huang J L. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. Plant Commun, 2024, 5: 100782. |
[4] |
Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi F B, Azad R K, Mittler R, Zandalinas S I. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol, 2019, 181: 1668-1682.
doi: 10.1104/pp.19.00956 pmid: 31594842 |
[5] | Gao W W, Li M K, Yang S G, Gao C Z, Su Y, Zeng X, Jiao Z L, Xu W J, Zhang M Y, Xia K F. miR2105 and the kinase OsSAPK10 co-regulate OsbZIP86 to mediate drought-induced ABA biosynthesis in rice. Plant Physiol, 2022, 189: 889-905. |
[6] | Yang L J, Xu L, Guo J Z, Li A P, Qi H Y, Wang J X, Song S Y. SNAC1-OsERF103-OsSDG705 module mediates drought response in rice. New Phytol, 2024, 241: 2480-2494. |
[7] | Jung H, Chung P J, Park S H, Redillas M C F R, Kim Y S, Suh J W, Kim J K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J, 2017, 15: 1295-1308. |
[8] |
Ramegowda V, Basu S, Krishnan A, Pereira A. Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol, 2014, 166: 1634-1645.
doi: 10.1104/pp.114.248203 pmid: 25209982 |
[9] | Lee D K, Jung H, Jang G, Jeong J S, Kim Y S, Ha S H, Choi Y D, Kim J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol, 2016, 172: 575-588. |
[14] | Huang S Z, Ma Z M, Hu L J, Huang K, Zhang M X, Zhang S H, Jiang W Z, Wu T, Du X L. Involvement of rice transcription factor OsERF19 in response to ABA and salt stress responses. Plant Physiol Biochem, 2021, 167: 22-30. |
[15] | Tezuka D, Kawamata A, Kato H, Saburi W, Mori H, Imai R. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. Plant Physiol Biochem, 2019, 135: 263-271. |
[16] | Pillai S E, Kumar C, Dasgupta M, Kumar B K, Vungarala S, Patel H K, Sonti R V. Ectopic expression of a cell-wall-degrading enzyme-induced OsAP2/ERF152 leads to resistance against bacterial and fungal infection in Arabidopsis. Phytopathology, 2020, 110: 726-733. |
[17] | Kong L F, Song Q, Wei H B, Wang Y H, Lin M H, Sun K, Zhang Y Q, Yang J R, Li C F, Luo K M. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. New Phytol, 2023, 240: 1848-1867. |
[18] | An J P, Zhang X W, Bi S Q, You C X, Wang X F, Hao Y J. The ERF transcription factor MdERF38 promotes drought stress- induced anthocyanin biosynthesis in apple. Plant J, 2020, 101: 573-589. |
[19] | Zhu Y Q, Liu Y, Zhou K M, Tian C Y, Aslam M, Zhang B L, Liu W J, Zou H W. Overexpression of ZmEREBP60 enhances drought tolerance in maize. J Plant Physiol, 2022, 275: 153763. |
[20] | Khan M, Dahro B, Wang Y, Wang M, Xiao W, Qu J, Zeng Y K, Fang T, Xiao P, Xu X Y, et al. The transcription factor ERF110 promotes cold tolerance by directly regulating sugar and sterol biosynthesis in Citrus. Plant J, 2024, 119: 2385-2401. |
[21] | Wang X, Hou C, Zheng K, Li Q, Chen S, Wang S. Overexpression of ERF96 a small ethylene response factor gene, enhances salt tolerance in Arabidopsis. Biol Plant, 2017, 61: 693-701. |
[22] | Zhu Y X, Zhang X M, Zhang Q H, Chai S Y, Yin W C, Gao M, Li Z, Wang X P. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Mol Plant Pathol, 2022, 23: 1415-1432. |
[23] | Lu W Q, Deng F Y, Jia J B, Chen X K, Li J F, Wen Q J, Li T T, Meng Y L, Shan W X. The Arabidopsis thaliana gene AtERF019 negatively regulates plant resistance to Phytophthora parasitica by suppressing PAMP-triggered immunity. Mol Plant Pathol, 2020, 21: 1179-1193. |
[24] | Távora F T P K, Meunier A C, Vernet A, Portefaix M, Milazzo J, Adreit H, Tharreau D, Franco O L, Mehta A. CRISPR/Cas9- targeted knockout of rice susceptibility genes OsDjA2 and OsERF104 reveals alternative sources of resistance to Pyricularia oryzae. Rice Sci, 2022, 29: 535-544. |
[25] |
Zong W, Tang N, Yang J, Peng L, Ma S Q, Xu Y, Li G L, Xiong L Z. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol, 2016, 171: 2810-2825.
doi: 10.1104/pp.16.00469 pmid: 27325665 |
[26] |
Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172 |
[27] | Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432. |
[28] | 陈悦, 陈茜, 董伟峰, 才晓溪, 沈阳, 杨珺凯, 贾博为, 孙明哲, 孙晓丽. 水稻AP2/ERF转录因子基因OsERF096启动子克隆及活性分析. 土壤与作物, 2022, 11(2): 159-169. |
Chen Y, Chen X, Dong W F, Cai X X, Shen Y, Yang J K, Jia B W, Sun M Z, Sun X L. Cloning and activity analysis of promoter of an AP2/ERF transcription factor gene OsERF096 in rice. Soils Crops, 2022, 11(2): 159-169 (in Chinese with English abstract). | |
[29] |
Yu Y W, Yang D X, Zhou S R, Gu J T, Wang F R, Dong J G, Huang R F. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma, 2017, 254: 401-408.
doi: 10.1007/s00709-016-0960-4 pmid: 27040682 |
[30] | Liu D F, Chen X J, Liu J Q, Ye J C, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911. |
[31] | Jiang L, Yang J, Liu C X, Chen Z P, Yao Z C, Cao S Q. Overexpression of ethylene response factor ERF96 gene enhances selenium tolerance in Arabidopsis. Plant Physiol Biochem, 2020, 149: 294-300. |
[32] |
陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展. 作物学报, 2022, 48: 781-790.
doi: 10.3724/SP.J.1006.2022.12026 |
[10] |
Ahn H, Jung I, Shin S J, Park J, Rhee S, Kim J K, Jung W, Kwon H B, Kim S. Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice. Front Plant Sci, 2017, 8: 1044.
doi: 10.3389/fpls.2017.01044 pmid: 28663756 |
[11] |
Jin Y, Pan W Y, Zheng X F, Cheng X, Liu M M, Ma H, Ge X C. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol Biol, 2018, 98: 51-65.
doi: 10.1007/s11103-018-0762-5 pmid: 30143992 |
[12] | Zhang H W, Zhang J F, Quan R D, Pan X W, Wan L Y, Huang R F. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta, 2013, 237: 1443-1451. |
[13] | Greco M, Chiappetta A, Bruno L, Bitonti M B. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot, 2012, 63: 695-709. |
[32] |
Chen Y, Sun M Z, Jia B W, Leng Y, Sun X L. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response. Acta Agron Sin, 2022, 48: 781-790 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12026 |
[33] |
Donde R, Gupta M K, Gouda G, Kumar J, Vadde R, Sahoo K K, Dash S K, Behera L. Computational characterization of structural and functional roles of DREB1A, DREB1B and DREB1C in enhancing cold tolerance in rice plant. Amino Acids, 2019, 51: 839-853.
doi: 10.1007/s00726-019-02727-0 pmid: 30900088 |
[34] |
Zhang X, Long Y, Huang J J, Xia J X. OsNAC45 is involved in ABA response and salt tolerance in rice. Rice (N Y), 2020, 13: 79.
doi: 10.1186/s12284-020-00440-1 pmid: 33284415 |
[35] | Li Y X, Han S C, Sun X M, Khan N U, Zhong Q, Zhang Z Y, Zhang H L, Ming F, Li Z C, Li J J. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice. J Integr Plant Biol, 2023, 65: 918-933. |
[36] | Li R Q, Jiang M, Song Y, Zhang H L. Melatonin alleviates low-temperature stress via ABI5-mediated signals during seed germination in rice (Oryza sativa L.). Front Plant Sci, 2021, 12: 727596. |
[1] | 李雪婷, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘莹, 姚海燕, 刘鹏. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响[J]. 作物学报, 2025, 51(4): 1091-1101. |
[2] | 朱建平, 李文奇, 许扬, 王芳权, 李霞, 蒋彦婕, 范方军, 陶亚军, 陈智慧, 吴莹莹, 杨杰. 水稻粉质胚乳突变体we2的表型分析与基因定位[J]. 作物学报, 2025, 51(4): 1110-1117. |
[3] | 方应浩, 周波, 陈茹梅, 杨文竹, 秦慧民. 基于RNA-seq和PER-seq联合分析探究ZmHDZ6表达调控网络[J]. 作物学报, 2025, 51(4): 958-968. |
[4] | 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887. |
[5] | 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796. |
[6] | 苏畅, 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉. 铝胁迫下水稻osalr3突变体对外源有机酸和植物生长调节物质的响应[J]. 作物学报, 2025, 51(3): 676-686. |
[7] | 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666. |
[8] | 刘建国, 陈冬东, 陈玉玉, 易琴琴, 李清, 徐正进, 钱前, 沈兰. 水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响[J]. 作物学报, 2025, 51(3): 598-608. |
[9] | 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346. |
[10] | 李春梅, 陈洁, 郎兴宣, 庄海民, 朱靖, 杜梓君, 冯浩天, 金涵, 朱国林, 刘凯. 水稻矮化多分蘖基因DT1的图位克隆与功能分析[J]. 作物学报, 2025, 51(2): 347-357. |
[11] | 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417. |
[12] | 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188. |
[13] | 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259. |
[14] | 郭飞翔, 李春霞, 周爽, 郭彬彬, 张均, 马超. 绿豆R2R3-MYB转录因子家族鉴定及其类黄酮合成调控基因的筛选[J]. 作物学报, 2025, 51(1): 117-133. |
[15] | 孟凡花, 刘敏, 沈傲, 刘炜. 脂质转移蛋白SiLTP1基因参与谷子耐盐响应初探[J]. 作物学报, 2025, 51(1): 58-67. |
|