作物学报 ›› 2025, Vol. 51 ›› Issue (4): 888-899.doi: 10.3724/SP.J.1006.2025.44156
WANG Xiao-Lin(), LIU Zhong-Song, KANG Lei, YANG Liu(
)
摘要:
甘蓝型油菜(Brassica napus L.)是全球重要的油料作物, 提高其产量是育种的重要目标。单位面积角果数、每角粒数和粒重是油菜产量的3个构成因子。角果长度虽然不是油菜产量的直接构成因素, 但影响每角粒数和粒重, 进而影响油菜产量。本研究以角果长度和每角粒数差异显著的亲本YA和中双11号(ZS11)及用其构建的包含211个株系的重组自交系(RIL)群体为材料, 在长沙秋播和民乐夏播, 考察角果长度和每角粒数, 通过群体及双亲重测序对上述2个性状进行QTL定位, 结果在2个环境下均检测到1个角果长度和每角粒数的主效QTL, 其位于A09染色体。双亲开花后3~21 d, 角果皮转录组测序分析发现角果皮光合作用、激素和次生代谢物合成的基因在角果发育中发挥了重要作用, 功能注释认为BnaA09.CYP78A9、BnaC08.SCL13和BnaA04.ARL等参与生长素响应和传导的基因为调控油菜角果长度的候选基因。这些结果为进一步开展油菜角果长度基因精细定位及其调控机制研究奠定了基础。
[1] | Özer H, Oral E, ÜNSAL DOĞ R U. Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turkish J Agric For, 1999, 23: 603-608. |
[2] | 丁秀琦. 白菜型春油菜角果和种子性状研究. 中国油料, 1996, 18(4): 28-30. |
Ding X Q. Study on characters of silique and seed in spring rape (B. campestris L.). Chin J Oil Crop Sci, 1996, 18(4): 28-30 (in Chinese). | |
[3] | 王艳惠, 牛应泽. 人工合成甘蓝型油菜特长角性状的遗传分析. 遗传, 2006, 28: 1273-1279. |
Wang Y H, Niu Y Z. Genetic analysis of a specially long pod character in artificially resynthesized Brassica napus L. Hereditas, 2006, 28: 1273-1279 (in Chinese with English abstract). | |
[4] |
Zhang L W, Li S P, Chen L, Yang G S. Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet, 2012, 125: 695-705.
doi: 10.1007/s00122-012-1861-3 pmid: 22487878 |
[5] |
Yang P, Shu C, Chen L, Xu J S, Wu J S, Liu K D. Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 125: 285-296
doi: 10.1007/s00122-012-1833-7 pmid: 22406980 |
[6] | 袁泽俊. 油菜A9染色体角果长和千粒重主效QTL的验证. 华中农业大学硕士学位论文, 湖北武汉, 2013. |
Yuan Z J. Verification of Major QTL for Pod Length and 1000-grain Weight of A9 Chromosome in Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract). | |
[7] | Qi L P, Mao L, Sun C M, Pu Y Y, Fu T D, Ma C Z, Shen J X, Tu J X, Yi B, Wen J. Interpreting the genetic basis of silique traits in Brassica napus using a joint QTL network. Plant Breed, 2014, 133: 52-60. |
[8] |
Wang H, Zaman Q U, Huang W H, Mei D S, Liu J, Wang W X, Ding B L, Hao M Y, Fu L, Cheng H T, et al. QTL and candidate gene identification for silique length based on high-dense genetic map in Brassica napus L. Front Plant Sci, 2019, 10: 1579.
doi: 10.3389/fpls.2019.01579 pmid: 31850044 |
[9] |
Zhou X M, Dai L H, Wang P F, Liu Y, Zhang H Y, Xin Q, Wan L L, Yang L Y, Yang G S, et al. Mining favorable alleles for five agronomic traits from the elite rapeseed cultivar Zhongshuang 11 by QTL mapping and integration. Crop J, 2021, 9: 1449-1459.
doi: 10.1016/j.cj.2020.12.008 |
[10] | Liu J, Hua W, Hu Z Y, Yang H L, Zhang L, Li R J, Deng L B, Sun X C, Wang X F, Wang H Z. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015, 112: E5123-E5132. |
[11] | Liu M, Chang W, Yu M N, Fan Y H, Shang G X, Xu Y F, Niu Y, Liu X M, Zhu H, Dai L S, et al. Overexpression of DEFECTIVE IN ANTHER DEHISCENCE 1 increases rapeseed silique length through crosstalk between JA and auxin signaling. Ind Crops Prod, 2021, 168: 113576. |
[12] | Shi L L, Song J R, Guo C C, Wang B, Guan Z L, Yang P, Chen X, Zhang Q H, King G J, Wang J, et al. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J, 2019, 98: 524-539. |
[13] | Zhou X M, Zhang H Y, Wang P F, Liu Y, Zhang X H, Song Y X, Wang Z Y, Ali A, Wan L L, Yang G S, et al. BnaC7.ROT3, the causal gene of cqSL-C7, mediates silique length by affecting cell elongation in Brassica napus. J Exp Bot, 2022, 73: 154-167. |
[14] | Zhang L Y, Yang B, Li X D, Chen S, Zhang C, Xiang S R, Sun T T, Yang Z Y, Kong X Z, Qu C M, et al. Integrating GWAS, RNA-Seq and functional analysis revealed that BnaA02.SE mediates silique elongation by affecting cell proliferation and expansion in Brassica napus. Plant Biotechnol J, 2024, 22: 2907-2920. |
[15] | 郭娜, 左凯峰, 张淼, 张冰冰, 秦梦凡, 马宁, 刘翔, 李青青, 黄镇, 徐爱遐. 甘蓝型油菜主要株型和产量性状的综合分析. 西北农业学报, 2020, 29: 898-906. |
Guo N, Zuo K F, Zhang M, Zhang B B, Qin M F, Ma N, Liu X, Li Q Q, Huang Z, Xu A X. Comprehensive analysis of major plant-type and yield traits in Brassica napus L. Acta Agric Boreali- Occident Sin, 2020, 29: 898-906 (in Chinese with English abstract). | |
[16] | 张立武. 甘蓝型油菜每角粒数的遗传和主效QTL的定位. 华中农业大学博士学位论文, 湖北武汉, 2010. |
Zhang L W. Inheritance of Grains per Corn and Mapping of Major QTL in Brassica napus L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2010 (in Chinese with English abstract). | |
[17] | Xing X R, Liu H D, Ye J X, Yao Y M, Li K X, Li Y L, Du D Z. QTL analysis and candidate gene prediction for seed density per silique by QTL-seq and RNA-seq in spring Brassica napus L. PLoS One, 2023, 18: e0281875. |
[18] | Zhu J F, Lei L, Wang W R, Jiang J X, Zhou X R. QTL mapping for seed density per silique in Brassica napus. Sci Rep, 2023, 13: 772. |
[19] |
Yang Y, Shen Y S, Li S D, Ge X H, Li Z Y. High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci, 2017, 8: 1512.
doi: 10.3389/fpls.2017.01512 pmid: 28932230 |
[20] | Li X N, Ramchiary N, Dhandapani V, Choi S R, Hur Y, Nou I S, Yoon M K, Lim Y P. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species. DNA Res, 2013, 20: 1-16. |
[21] | Shi J Q, Zhan J P, Yang Y H, Ye J, Huang S M, Li R Y, Wang X F, Liu G H, Wang H Z. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep, 2015, 5: 14481. |
[22] | Jiao Y M, Zhang K P, Cai G Q, Yu K D, Amoo O, Han S Q, Zhao X, Zhang H, Hu L M, Wang B R, et al. Fine mapping and candidate gene analysis of a major locus controlling ovule abortion and seed number per silique in Brassica napus L. Theor Appl Genet, 2021, 134: 2517-2530. |
[23] | Li S P, Chen L, Zhang L W, Li X, Liu Y, Wu Z K, Dong F M, Wan L L, Liu K D, Hong D F, et al. BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiol, 2015, 169: 2744-2760. |
[24] | Xin S S, Dong H L, Cui Y X, Liu Y L, Tian G F, Deng N X, Wan H F, Liu Z, Li X R, Qian W. Identification of a candidate QTG for seed number per silique by integrating QTL mapping and RNA-seq in Brassica napus L. Crop J, 2023, 11: 189-197. |
[25] |
严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105 |
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.11105 |
|
[26] | Song J M, Guan Z L, Hu J L, Guo C C, Yang Z Q, Wang S, Liu D X, Wang B, Lu S P, Zhou R, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants, 2020, 6: 34-45. |
[27] | Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in- one FASTQ preprocessor. Bioinformatics, 2018, 34: i884-i890. |
[28] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[29] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[30] | Luo X B, Xu L, Wang Y, Dong J H, Chen Y L, Tang M J, Fan L X, Zhu Y L, Liu L W. An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.). Plant Biotechnol J, 2020, 18: 274-286. |
[31] |
Xie W B, Feng Q, Yu H H, Huang X H, Zhao Q, Xing Y Z, Yu S B, Han B, Zhang Q F. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010, 107: 10578-10583.
doi: 10.1073/pnas.1005931107 pmid: 20498060 |
[32] | Li J, Wang S, Zeng Z B. Multiple interval mapping for ordinal traits. Genetics, 2006, 173: 1649-1663. |
[33] |
李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 等. 栽培种花生单仁重QTL定位分析. 作物学报, 2023, 49: 2160-2170.
doi: 10.3724/SP.J.1006.2023.24190 |
Li X, Yang H, Luo L, Li H D, Zhang K, Zhang X R, Li Y Y, Yu H Y, Wang T Y, Liu J Q, et al. QTL mapping analysis of single kernel weight of cultivated peanut. Acta Agron Sin, 2023, 49: 2160-2170 (in Chinese with English abstract). | |
[34] |
Davis E M, Sun Y, Liu Y L, Kolekar P, Shao Y, Szlachta K, Mulder H L, Ren D R, Rice S V, Wang Z M, et al. SequencErr: measuring and suppressing sequencer errors in next-generation sequencing data. Genome Biol, 2021, 22: 37.
doi: 10.1186/s13059-020-02254-2 pmid: 33487172 |
[35] |
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635 pmid: 23104886 |
[36] | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. |
[37] |
Kanehisa M, Goto S. KEGG Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173 |
[38] |
Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29.
doi: 10.1038/75556 pmid: 10802651 |
[39] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[40] | Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799-808. |
[41] | 师家勤. 甘蓝型油菜产量性状及其杂种优势遗传基础的全基因组解析. 华中农业大学博士学位论文, 湖北武汉, 2009. |
Shi J Q. Genome-wide Analysis of Yield Traits and Genetic Basis of Heterosis in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2009 (in Chinese with English abstract). | |
[42] | 李娜. 甘蓝型油菜粒重母体调控机理解析. 中国农业科学院博士学位论文, 北京, 2015. |
Li N. Analysis of Maternal Regulation Mechanism of Grain Weight in Brassica napus. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[43] | Feng G P, Qin Z X, Yan J Z, Zhang X R, Hu Y X. Arabidopsis organ size related1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol, 2011, 191: 635-646. |
[44] | Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation: a review. Plant Biol, 2022, 24: 404-416. |
[45] | 官春云, 黄太平, 李栒, 陈社员. 不同植物激素对油菜角果生长和结实的影响. 中国油料作物学报, 2004, 26(1): 5-7. |
Guan C Y, Huang T P, Li X, Chen S Y. Effect of different plant hormones on siliques growth and seeds maturity in rapeseed (B. napus). Chin J Oil Crop Sci, 2004, 26(1): 5-7 (in Chinese with English abstract). |
[1] | 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675. |
[2] | 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631. |
[3] | 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567. |
[4] | 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148. |
[5] | 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57. |
[6] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[7] | 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156. |
[8] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[9] | 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171. |
[10] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[11] | 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029. |
[12] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[13] | 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956. |
[14] | 张锦辉, 肖姿仪, 李旭华, 张明, 贾春兰, 潘振远, 邱法展. 玉米突变体caspl2b2的耐盐特性评价及转录组分析[J]. 作物学报, 2024, 50(12): 3144-3154. |
[15] | 夏秀忠, 张宗琼, 农保选, 冯锐, 郭辉, 陈灿, 梁树辉, 荘洁, 廖祖宇, 宋国显, 杨行海, 李丹婷. 深水稻全生育期耐盐性状的QTL定位[J]. 作物学报, 2024, 50(10): 2493-2502. |
|