作物学报 ›› 2025, Vol. 51 ›› Issue (4): 873-887.doi: 10.3724/SP.J.1006.2025.41068
王林(), 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐(
), 张文英(
)
WANG Lin(), CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui(
), ZHANG Wen-Ying(
)
摘要:
干旱是全球农业生产中最主要的环境胁迫之一, 严重影响作物的生长发育和产量形成。挖掘野生大麦优异的抗旱基因对于我国干旱、半干旱区域抗旱大麦品种的选育与利用具有重要意义。为阐明HvMYB2基因的分子特性及其响应干旱胁迫的功能, 本研究从抗旱野生大麦EC_S1中扩增HvMYB2编码序列(CDS), 获得了912 bp长的CDS序列, 编码303个氨基酸。保守结构分析显示, HvMYB2为R2R3型MYB转录因子, 含有2个HTH_MYB结构域, 其编码蛋白定位于细胞核。系统发育分析表明, HvMYB2与小麦PIMP1蛋白同源性最高(87.5%)。表达模式分析显示, HvMYB2在苗期地上部分表达水平最高。在干旱胁迫条件下, HvMYB2在抗旱野生大麦EC_S1中表达水平显著升高。过表达HvMYB2的拟南芥株系在干旱条件下表现出更强的抗旱性, 干旱胁迫下叶片相对含水量、叶绿素a和叶绿素b含量显著高于野生型拟南芥, 相对电导率则显著降低, 叶片气孔导度显著低于野生型植株。反之, 沉默HvMYB2导致了大麦植株在干旱胁迫下的抗旱性显著降低, 表现为更高的水分损失和细胞损伤, 以及更大的气孔导度。由此推测HvMYB2通过调节叶片气孔导度正调控大麦的抗旱性。互作蛋白预测结果显示, HvMYB2可能与HvMYB27和HvMYB29转录因子形成复合物以调节下游基因表达。此外, HvMYB2启动子分析揭示其包含多个干旱诱导和激素响应元件, 野生大麦HvMYB2启动子中181 bp特异性片段插入导致其转录水平受干旱显著诱导, 可能提高了野生大麦EC_S1的抗旱性。本研究为全面解析HvMYB2抗旱分子调控机制奠定了基础, 为大麦品种抗旱遗传改良提供了新的基因资源。
[1] | Geng L, Li M D, Zhang G P, Ye L Z. Barley: a potential cereal for producing healthy and functional foods. Food Qual Saf, 2022, 6: fyac012. |
[2] | Elakhdar A, Solanki S, Kubo T, Abed A, Elakhdar I, Khedr R, Hamwieh A, Capo-chichi L J A, Abdelsattar M, Franckowiak J D, et al. Barley with improved drought tolerance: challenges and perspectives. Environ Exp Bot, 2022, 201: 104965. |
[3] | Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588: 284-289. |
[4] | 白万鹏, 李虎军, 刘林波, 王锁民. 植物气孔与角质层蜡质响应非生物胁迫的研究进展. 安徽农业科学, 2020, 48(22): 14-18. |
Bai W P, Li H J, Liu L B, Wang S M. Research progress of plant stomata and cuticular wax in response to abiotic stress. J Anhui Agric Sci, 2020, 48(22): 14-18 (in Chinese with English abstract). | |
[5] |
Dittrich M, Mueller H M, Bauer H, Peirats-Llobet M, Rodriguez P L, Geilfus C M, Carpentier S C, Al Rasheid K A S, Kollist H, Merilo E, et al. The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants, 2019, 5: 1002-1011.
doi: 10.1038/s41477-019-0490-0 pmid: 31451795 |
[6] |
Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368: 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946 |
[7] | Gonzalez-Guzman M, Pizzio G A, Antoni R, Vera-Sirera F, Merilo E, Bassel G W, Fernández M A, Holdsworth M J, Perez- Amador M A, Kollist H, et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell, 2012, 24: 2483-2496. |
[8] | Zhang P Y, Yuan Z, Wei L, Qiu X, Wang G R, Liu Z X, Fu J X, Cao L R, Wang T C. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. Plant Sci, 2022, 314: 111127. |
[9] | Zeng X Q, Bai L J, Wei Z X, Yuan H J, Wang Y L, Xu Q J, Tang Y W, Nyima T. Transcriptome analysis revealed the drought- responsive genes in Tibetan hulless barley. BMC Genomics, 2016, 17: 386. |
[10] | Xiong J Y, Chen D Y, Su T T, Shen Q F, Wu D Z, Zhang G P. Genome-wide identification, expression pattern and sequence variation analysis of SnRK family genes in barley. Plants (Basel), 2022, 11: 975. |
[11] |
Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol, 2006, 60: 51-68.
pmid: 16463099 |
[12] | Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi- Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78. |
[13] | 关范圆, 郑语嫣, 米芯雨, 范菁, 王宝纬, 王晓晖. R2R3型MYB转录因子调控植物胁迫应答的研究进展. 植物医学, 2024, 3(3): 1-9. |
Guan F Y, Zheng Y Y, Mi X Y, Fan J, Wang B W, Wang X H. Research advance of the functions of R2R3-MYB transcription factors in plant response to biotic and abiotic stresses. Plant Health Med, 2024, 3(3): 1-9 (in Chinese with English abstract). | |
[14] |
王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定. 作物学报, 2024, 50: 76-88.
doi: 10.3724/SP.J.1006.2024.33007 |
Wang L P, Wang X Y, Fu J Y, Wang Q. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants. Acta Agron Sin, 2024, 50: 76-88 (in Chinese with English abstract). | |
[15] |
Rahaie M, Xue G P, Naghavi M R, Alizadeh H, Schenk P M. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Rep, 2010, 29: 835-844.
doi: 10.1007/s00299-010-0868-y pmid: 20490502 |
[16] | Zheng L, Kong Y N, Yan X C, Liu Y X, Wang X R, Zhang J P, Qi X L, Cao X Y, Zhang S X, Liu Y W, et al. TaMYB-CC5 gene specifically expressed in root improve tolerance of phosphorus deficiency and drought stress in wheat. Plant Physiol Biochem, 2024, 215: 109011. |
[17] | Wei Q H, Zhang F, Sun F S, Luo Q C, Wang R B, Hu R, Chen M J, Chang J L, Yang G X, He G Y. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants. Plant Sci, 2017, 265: 112-123. |
[18] | Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138-1152. |
[19] | Qu X X, Zou J J, Wang J X, Yang K Z, Wang X Q, Le J. A rice R2R3-type MYB transcription factor OsFLP positively regulates drought stress response via OsNAC. Int J Mol Sci, 2022, 23: 5873. |
[20] | Park M Y, Kang J Y, Kim S Y. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol Cells, 2011, 31: 447-454. |
[21] | Li X M, Zhong M, Qu L N, Yang J X, Liu X Q, Zhao Q, Liu X M, Zhao X Y. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Sci, 2021, 310: 110983. |
[22] |
Zhao Y, Cheng X Y, Liu X D, Wu H F, Bi H H, Xu H X. The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Front Plant Sci, 2018, 9: 1426.
doi: 10.3389/fpls.2018.01426 pmid: 30323824 |
[23] |
Peng D, Li L Q, Wei A S, Zhou L, Wang B X, Liu M L, Lei Y H, Xie Y Z, Li X J. TaMYB44-5A reduces drought tolerance by repressing transcription of TaRD22-3A in the abscisic acid signaling pathway. Planta, 2024, 260: 52.
doi: 10.1007/s00425-024-04485-0 pmid: 39003354 |
[24] |
Tombuloglu H, Kekec G, Sakcali M S, Unver T. Transcriptome- wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. Mol Genet Genomics, 2013, 288: 141-155.
doi: 10.1007/s00438-013-0740-1 pmid: 23539153 |
[25] |
Chen L, Cui Y M, Yao Y H, An L K, Bai Y X, Li X, Yao X H, Wu K L. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.). BMC Genomics, 2023, 24: 166.
doi: 10.1186/s12864-023-09240-5 pmid: 37016311 |
[26] |
Strygina K V, Börner A, Khlestkina E K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biol, 2017, 17: 184.
doi: 10.1186/s12870-017-1122-3 pmid: 29143621 |
[27] | Himi E, Yamashita Y, Haruyama N, Yanagisawa T, Maekawa M, Taketa S. Ant28 gene for proanthocyanidin synthesis encoding the R2R3 MYB domain protein (Hvmyb10) highly affects grain dormancy in barley. Euphytica, 2012, 188: 141-151. |
[28] | Seven M, Akdemir H. DOF, MYB and TCP transcription factors: their possible roles on barley germination and seedling establishment. Gene Expr Patterns, 2020, 37: 119116. |
[29] | Alexander R D, Wendelboe-Nelson C, Morris P C. The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiol Biochem, 2019, 142: 246-253. |
[30] | Zhang W Y, Tan C, Hu H F, Pan R, Xiao Y H, Ouyang K, Zhou G F, Jia Y, Zhang X Q, Hill C B, et al. Genome architecture and diverged selection shaping pattern of genomic differentiation in wild barley. Plant Biotechnol J, 2023, 21: 46-62. |
[31] | Chang C W, Fridman E, Mascher M, Himmelbach A, Schmid K. Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant. Heredity, 2022, 128: 107-119. |
[32] | Pan R, Buitrago S, Feng Z B, Abou-Elwafa S F, Xu L, Li C D, Zhang W Y. HvbZIP21, a novel transcription factor from wild barley confers drought tolerance by modulating ROS scavenging. Front Plant Sci, 2022, 13: 878459. |
[33] | Yuan C, Li C, Yan L J, Jackson A O, Liu Z Y, Han C G, Yu J L, Li D W. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One, 2011, 6: e26468. |
[34] | Zhang Z Y, Liu X, Wang X D, Zhou M P, Zhou X Y, Ye X G, Wei X N. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol, 2012, 196: 1155-1170. |
[35] | Li B Z, Liu R N, Liu J, Zhang H, Tian Y N, Chen T T, Li J X, Jiao F H, Jia T F, Li Y X, et al. ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings by regulating ZmTOM7 expression at the transcriptional level. New Crops, 2024, 1: 100012. |
[36] | Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008, 146: 623-635. |
[37] | Zhu N, Duan B L, Zheng H L, Mu R R, Zhao Y Y, Ke L P, Sun Y Q. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. Plant Physiol Biochem, 2023, 197: 107648. |
[38] | Lim J, Lim C W, Lee S C. Role of pepper MYB transcription factor CaDIM1 in regulation of the drought response. Front Plant Sci, 2022, 13: 1028392. |
[39] | Xu C Z, Fu X K, Liu R, Guo L, Ran L Y, Li C F, Tian Q Y, Jiao B, Wang B J, Luo K M. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol, 2017, 37: 1713-1726. |
[40] |
Simeoni F, Skirycz A, Simoni L, Castorina G, de Souza L P, Fernie A R, Alseekh S, Giavalisco P, Conti L, Tonelli C, et al. The AtMYB60 transcription factor regulates stomatal opening by modulating oxylipin synthesis in guard cells. Sci Rep, 2022, 12: 533.
doi: 10.1038/s41598-021-04433-y pmid: 35017563 |
[41] | Zhu Y F, Zhu G T, Xu R, Jiao Z X, Yang J W, Lin T, Wang Z, Huang S W, Chong L, Zhu J K. A natural promoter variation of SlBBX31 confers enhanced cold tolerance during tomato domestication. Plant Biotechnol J, 2023, 21: 1033-1043. |
[42] | Sun X M, Xiong H Y, Jiang C H, Zhang D M, Yang Z L, Huang Y P, Zhu W B, Ma S S, Duan J Z, Wang X, et al. Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun, 2022, 13: 4265. |
[1] | 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666. |
[2] | 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346. |
[3] | 郭飞翔, 李春霞, 周爽, 郭彬彬, 张均, 马超. 绿豆R2R3-MYB转录因子家族鉴定及其类黄酮合成调控基因的筛选[J]. 作物学报, 2025, 51(1): 117-133. |
[4] | 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166. |
[5] | 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761. |
[6] | 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583. |
[7] | 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88. |
[8] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132. |
[9] | 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881. |
[10] | 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965. |
[11] | 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376. |
[12] | 张逸宁, 张艳菲, 汪敏, 王景一, 李龙, 李超男, 杨德龙, 毛新国, 景蕊莲. 小麦转录因子基因TaPHR1参与调控每穗小穗数[J]. 作物学报, 2023, 49(12): 3176-3187. |
[13] | 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析[J]. 作物学报, 2023, 49(12): 3289-3301. |
[14] | 张艳艳, 关涵文, 刘淋茹, 贺利, 段剑钊, 王晨阳, 郭天财, 冯伟. 不同水分条件下施磷对冬小麦穗花发育及产量的影响[J]. 作物学报, 2023, 49(10): 2753-2765. |
[15] | 王穆穆, 何艳芳, 郑永胜, 王晖, 王丽媛, 王东建, 张晗, 李汝玉. 水稻落粒基因SH8的精细定位与克隆[J]. 作物学报, 2022, 48(8): 1948-1956. |
|