欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (4): 873-887.doi: 10.3724/SP.J.1006.2025.41068

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大麦HvMYB2分子特性及响应干旱胁迫的功能分析

王林(), 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐(), 张文英()   

  1. 长江大学农学院, 湖北荆州 434025
  • 收稿日期:2024-10-11 接受日期:2025-01-23 出版日期:2025-04-12 网络出版日期:2025-02-08
  • 通讯作者: 潘锐, E-mail: rui.p@yangtzeu.edu.cn; 张文英, E-mail: wyzhang@yangtzeu.edu.cn
  • 作者简介:E-mail: 2404085484@qq.com
  • 基金资助:
    国家自然科学基金面上项目(32372052);长江大学大学生创新创业项目(Yz2023206)

Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley

WANG Lin(), CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui(), ZHANG Wen-Ying()   

  1. College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2024-10-11 Accepted:2025-01-23 Published:2025-04-12 Published online:2025-02-08
  • Contact: E-mail: rui.p@yangtzeu.edu.cn; E-mail: wyzhang@yangtzeu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32372052);College Students’ Innovative Entrepreneurial Training Plan Program in Yangtze University(Yz2023206)

摘要:

干旱是全球农业生产中最主要的环境胁迫之一, 严重影响作物的生长发育和产量形成。挖掘野生大麦优异的抗旱基因对于我国干旱、半干旱区域抗旱大麦品种的选育与利用具有重要意义。为阐明HvMYB2基因的分子特性及其响应干旱胁迫的功能, 本研究从抗旱野生大麦EC_S1中扩增HvMYB2编码序列(CDS), 获得了912 bp长的CDS序列, 编码303个氨基酸。保守结构分析显示, HvMYB2为R2R3型MYB转录因子, 含有2个HTH_MYB结构域, 其编码蛋白定位于细胞核。系统发育分析表明, HvMYB2与小麦PIMP1蛋白同源性最高(87.5%)。表达模式分析显示, HvMYB2在苗期地上部分表达水平最高。在干旱胁迫条件下, HvMYB2在抗旱野生大麦EC_S1中表达水平显著升高。过表达HvMYB2的拟南芥株系在干旱条件下表现出更强的抗旱性, 干旱胁迫下叶片相对含水量、叶绿素a和叶绿素b含量显著高于野生型拟南芥, 相对电导率则显著降低, 叶片气孔导度显著低于野生型植株。反之, 沉默HvMYB2导致了大麦植株在干旱胁迫下的抗旱性显著降低, 表现为更高的水分损失和细胞损伤, 以及更大的气孔导度。由此推测HvMYB2通过调节叶片气孔导度正调控大麦的抗旱性。互作蛋白预测结果显示, HvMYB2可能与HvMYB27和HvMYB29转录因子形成复合物以调节下游基因表达。此外, HvMYB2启动子分析揭示其包含多个干旱诱导和激素响应元件, 野生大麦HvMYB2启动子中181 bp特异性片段插入导致其转录水平受干旱显著诱导, 可能提高了野生大麦EC_S1的抗旱性。本研究为全面解析HvMYB2抗旱分子调控机制奠定了基础, 为大麦品种抗旱遗传改良提供了新的基因资源。

关键词: 野生大麦, MYB转录因子, 干旱胁迫, 基因克隆, VIGS沉默

Abstract:

Drought is one of the most critical environmental stresses affecting global agricultural production, severely impairing crop growth and yield. Identifying drought-resistant genes in wild barley holds significant potential for the utilization of arid and semi-arid lands in northwest China. This study focused on the molecular characterization of the HvMYB2 gene and its functional role under drought stress. A 912 bp coding sequence (CDS) of HvMYB2 was amplified from the drought-tolerant wild barley EC_S1, encoding a protein of 303 amino acids. Conserved structure analysis revealed that HvMYB2 is an R2R3-type MYB transcription factor containing two HTH_MYB domains, and it was predicted to localize in the nucleus. Phylogenetic analysis showed that HvMYB2 shares the highest homology (87.5%) with wheat PIMP1. Expression pattern analysis indicated that HvMYB2 is most highly expressed in the shoots at the seedling stage. Under drought stress, HvMYB2 expression was significantly upregulated in the drought-tolerant wild barley EC_S1. Arabidopsis thaliana plants overexpressing HvMYB2 exhibited enhanced drought tolerance, characterized by higher relative water content, increased chlorophyll a and b levels, and reduced relative electrical conductivity. Additionally, these plants displayed lower stomatal conductance under drought conditions compared to wild-type plants. Conversely, silencing HvMYB2 in barley significantly reduced drought tolerance, resulting in greater water loss, increased cell damage, and higher stomatal conductance. These results suggest that HvMYB2 positively regulates drought tolerance in barley by modulating stomatal closure. Protein interaction predictions indicated that HvMYB2 may form a complex with the transcription factors HvMYB27 and HvMYB29 to regulate downstream gene expression. Promoter analysis of HvMYB2 revealed the presence of multiple drought-responsive and hormone-regulated elements. Notably, the insertion of a 181 bp specific fragment in the HvMYB2 promoter of wild barley significantly enhanced its transcription under drought conditions, potentially contributing to the strong drought tolerance observed in EC_S1. These findings provide new insights into the role of HvMYB2 in plant drought tolerance mechanisms and offer a valuable genetic resource for improving drought tolerance in barley.

Key words: wild barley, MYB transcription factor, drought stress, gene cloning, VIGS

表1

本研究所用引物信息"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
HvMYB2-CDs-F ATGGGACGCCCGTCGT
HvMYB2-CDs-R TCAGAAGTATGGTTCCAATTC
HvMYB2-pro-F CTCTGTAGCAGCTAAGCATGC
HvMYB2-pro-R TCGATCAGTTGATTCCGCTC
HvMYB2-OE-F agtggtctctgtccagtcctATGGGACGCCCGTCGT
HvMYB2-OE-R ggtctcagcagaccacaagtTCAGAAGTATGGTTCCAATTC
HvMYB2-VIGS-F GTGGATCAACTACCTCCGCC
HvMYB2-VIGS-R GGTCTTCCTCTTCTGCGTCC
HvMYB2-PDS-F AAGCCAGGAGAATACAGC
HvMYB2-PDS-R ACAGAATGCACTGCATAG
HvMYB2-RT-qPCR-F TCAAGAAGAAGCTCCGGCAG
HvMYB2-RT-qPCR-R GGTCTTCCTCTTCTGCGTCC
β-Actin-F GCCGTGCTTTCCCTCTATG
β-Actin-R GCTTCTCCTTGATGTCCCTTA

图1

野生大麦EC_S1的HvMYB2编码区(CDs)克隆及结构分析 A: 野生大麦EC_S1中扩增912 bp的HvMYB2编码序列; B: HvMYB2基因结构分析; C: HvMYB2蛋白保守结构域预测。"

图2

大麦HvMYB2蛋白质磷酸化位点预测"

图3

HvMYB2蛋白二级结构预测"

图4

HvMYB2蛋白三级结构预测 不同颜色区域表示蛋白预测的置信度指标pLDDT (一个0~100的按原子估计的置信度, 数值越高表示置信度越高), 其中蓝色表示置信度最高, 红色表示置信度最低。"

图5

HvMYB2与近缘物种中MYB家族蛋白系统发育分析及序列比对 AEGTS: 节节麦; TRIUA: 乌拉尔图小麦; TRITD: 硬粒小麦; WHEAT: 普通小麦。"

图6

HvMYB2表达模式分析 A: HvMYB2在大麦不同组织部位和时期中的表达水平。数据来自BarleyX数据库。EMB: 萌发4 d的胚; ROO: 幼苗的根; ROO2: 根(苗期); LEA: 幼苗的芽; INF1: 幼嫩的花序; INF2: 发育中的花序; NOD: 分蘖发育; CAR5: 幼穗的种子(发育5 d); CAR15: 幼穗的种子(发育15 d); ETI: 黄化苗(黑暗); LEM: 花序的外稃; LOD: 花序的浆片; PAL: 花序的内稃; EPI: 表皮条带, 由上小穗脊和下叶脊组成; RAC: 花序轴; SEN: 衰老叶片。B: HvMYB2在不同基因型大麦响应干旱胁迫中的表达水平; C: HvMYB2蛋白在烟草中异源表达的亚细胞位置。Bright: 白光; GFP: 488 nm激发光源; DAPI: 4',6-二脒基-2-苯基吲哚, 细胞核染料, 340 nm激发光源; Merged: 白光、488 nm、340 nm三通道。标尺为15 μm。"

图7

HvMYB2过表达拟南芥植株的抗旱性评估 A: HvMYB2过表达株系中HvMYB2基因表达水平半定量分析, Actin2基因为内参基因。M: DL2000 marker; H2O: PCR阴性对照; WT: 野生型拟南芥, 作为转基因拟南芥植株的对照; 1~9: 1~9号转基因株系。B: 野生型和3个HvMYB2过表达拟南芥株系(OE2、OE4、OE9)干旱胁迫5 d后的表型。C: 相对电导率(REC)。D: 相对含水量(RWC)。E: 气孔导度(Gs)。F: 叶绿素a含量(Chl a)。G: 叶绿素b含量(Chl b)。误差线上不同小写字母表示5%显著水平下的差异性。"

图8

HvMYB2沉默大麦植株抗旱性评价 A: 沉默标记基因HvPDS的大麦植株叶片出现光漂白表型。Mock: 接种BSMV::γ (空载体)的大麦植株。标尺为1 cm。B: HvPDS沉默植株中HvPDS基因表达水平显著降低。C: 接种BSMV::γ (Mock)和BSMV::HvMYB2 (随机3株, VIGS1、VIGS2、VIGS3)大麦植株中HvMYB2基因的表达水平。D: 接种BSMV::γ (Mock)和BSMV::HvMYB2大麦植株在正常供水和干旱处理7 d后的表型。E: 相对含水量(RWC)。F: 相对电导率(REC)。G: 气孔导度(Gs)。H: 黄叶面积比。数据来源于3个独立的生物学重复, 每个重复包含20个植株, 误差线上不同小写字母表示5%显著水平下的差异性。"

图9

HvMYB2的蛋白互作网络"

图10

HvMYB2启动子中的顺式作用元件分析 A: 顺式作用元件的分布; B: 顺式作用元件的数量。"

图11

基于大麦泛基因组的HvMYB2启动子变异分析"

附表1

启动子突变在泛基因组大麦基因型中的分布"

样品名称
Sample
生育习性
Annuality
起源地
Country of origin
棱型
Row type
资源类型
Status
亚种
Subspecies
启动子181 bp变异
Promoter mutation
(181 bp InDel)
EC_S1 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
B1K-04-12 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
F2327 冬性Winter 伊朗Iran 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID249 冬性Winter 伊朗Iran 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID251 冬性Winter 伊朗Iran 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID112XXI 兼性Facultative 叙利亚Syria 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID357 冬性Winter 土耳其Turkey 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
HID84 冬性Winter 土耳其Turkey 二棱2-rowed 野生型Wild 野生大麦Spontaneum 是Yes
EC_N1 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
Barke 春性Spring 德国Germany 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Igri 冬性Winter 德国Germany 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
RGT Planet 春性Spring 德国Germany 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Golden Promise 春性Spring 英国UK 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Hockett 春性Spring 美国USA 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Akashinriki 冬性Winter 日本Japan 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 3081 冬性Winter 波兰Poland 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Morex 春性Spring 美国USA 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 13821 春性Spring 土耳其Turkey 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 8148 春性Spring 土耳其Turkey 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
肚里黄ZDM01467 春性Spring 中国China 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
尺八ZDM02064
春性Spring 中国China 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 13942 春性Spring 西班牙Spain 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 10350 春性Spring 埃塞俄比亚
Ethiopia
六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 9043 春性Spring 埃塞俄比亚
Ethiopia
六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 7552 春性Spring 巴基斯坦Pakistan 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 3365 冬性Winter 俄罗斯Russia 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
OUN333 中间型Intermediate 尼泊尔Nepal 中间型
intermedium
地方种Landrace 栽培大麦Vulgare 否No
HOR 21595 春性Spring 叙利亚Syria 地方种Landrace 栽培大麦Vulgare 否No
Maximus 春性Spring 澳大利亚Australia 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Bonus 春性Spring 瑞典Sweden 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Foma 春性Spring 瑞典Sweden 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Bowman 春性Spring 美国USA 二棱2-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 2180 春性Spring 捷克Czech 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Chikurin Ibaraki 日本Japan 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 4224 冬性Winter 日本Japan 六棱6-rowed 栽培种Cultivar 栽培大麦Vulgare 否No
Aizu 6 日本Japan 栽培种Cultivar 栽培大麦Vulgare 否No
Golden Melon 日本Japan 栽培种Cultivar 栽培大麦Vulgare 否No
HOR 12184 冬性Winter 瑞士Switzerland 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 7385 春性Spring 捷克Czech 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 10892 春性Spring 格鲁吉亚Georgia 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 2779 春性Spring 伊朗Iran 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 2830 春性Spring 伊朗Iran 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 14121 春性Spring 叙利亚Syria 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 21322 冬性Winter 叙利亚Syria 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 14061 春性Spring 土耳其Turkey 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 8117 春性Spring 土耳其Turkey 二棱2-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 1702 春性Spring 阿富汗Afghanistan‌ 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 1168 春性Spring 希腊Greece 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 10096 春性Spring 利比亚Libya 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 7172 春性Spring 尼泊尔Nepal 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 9972 春性Spring 巴基斯坦Pakistan 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 3474 冬性Winter 俄罗斯Russia 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 495 春性Spring 土耳其Turkey 六棱6-rowed 地方种Landrace 栽培大麦Vulgare 否No
HOR 13594 春性Spring 也门Yemen 侧穗退化Deficiens 地方种Landrace 栽培大麦Vulgare 否No
HOR 6220 春性Spring 埃塞俄比亚Ethiopia 不稳定Labile 地方种Landrace 栽培大麦Vulgare 否No
HOR 18321 春性Spring 阿富汗Afghanistan‌ 地方种Landrace 栽培大麦Vulgare 否No
HOR 19184 春性Spring 印度India 地方种Landrace 栽培大麦Vulgare 否No
HOR 21322 春性Spring 伊朗Iran 地方种Landrace 栽培大麦Vulgare 否No
HOR 14273 春性Spring 苏丹Sudan 地方种Landrace 栽培大麦Vulgare 否No
10TJ18 塔吉克斯坦Tajikistan 地方种Landrace 栽培大麦Vulgare 否No
HOR 13663 冬性Winter 土耳其Turkey 地方种Landrace 栽培大麦Vulgare 否No
HOR 21256 春性Spring 地方种Landrace 栽培大麦Vulgare 否No
HID144 兼性Facultative 伊朗Iran 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
B1K-33-13 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
B1K-17-07 兼性Facultative 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC348 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC349 以色列Israel 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC103 约旦Jordan 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC237 约旦Jordan 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC184 利比亚Libya 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC133 黎巴嫩Lebanon 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
HID101 叙利亚Syria 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC078 叙利亚Syria 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC199 叙利亚Syria 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
HID055 兼性Facultative 土耳其Turkey 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
WBDC207 乌兹别克斯坦Uzbekistan 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
HOR 12541 二棱2-rowed 野生型Wild 野生大麦Spontaneum 否No
HID380 冬性Winter 中国China 六棱6-rowed 野生型Wild 野生六棱大麦Agriocrithon 否No

图12

启动子变异对转录活性的影响 pro-HvMYB2a类型的启动子不包含181 bp的序列插入; pro-HvMYB2b类型的启动子包含181 bp序列插入, 主要为野生大麦EC_S1和B1K-04-12中的启动子类型。"

[1] Geng L, Li M D, Zhang G P, Ye L Z. Barley: a potential cereal for producing healthy and functional foods. Food Qual Saf, 2022, 6: fyac012.
[2] Elakhdar A, Solanki S, Kubo T, Abed A, Elakhdar I, Khedr R, Hamwieh A, Capo-chichi L J A, Abdelsattar M, Franckowiak J D, et al. Barley with improved drought tolerance: challenges and perspectives. Environ Exp Bot, 2022, 201: 104965.
[3] Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588: 284-289.
[4] 白万鹏, 李虎军, 刘林波, 王锁民. 植物气孔与角质层蜡质响应非生物胁迫的研究进展. 安徽农业科学, 2020, 48(22): 14-18.
Bai W P, Li H J, Liu L B, Wang S M. Research progress of plant stomata and cuticular wax in response to abiotic stress. J Anhui Agric Sci, 2020, 48(22): 14-18 (in Chinese with English abstract).
[5] Dittrich M, Mueller H M, Bauer H, Peirats-Llobet M, Rodriguez P L, Geilfus C M, Carpentier S C, Al Rasheid K A S, Kollist H, Merilo E, et al. The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants, 2019, 5: 1002-1011.
doi: 10.1038/s41477-019-0490-0 pmid: 31451795
[6] Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368: 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946
[7] Gonzalez-Guzman M, Pizzio G A, Antoni R, Vera-Sirera F, Merilo E, Bassel G W, Fernández M A, Holdsworth M J, Perez- Amador M A, Kollist H, et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell, 2012, 24: 2483-2496.
[8] Zhang P Y, Yuan Z, Wei L, Qiu X, Wang G R, Liu Z X, Fu J X, Cao L R, Wang T C. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants. Plant Sci, 2022, 314: 111127.
[9] Zeng X Q, Bai L J, Wei Z X, Yuan H J, Wang Y L, Xu Q J, Tang Y W, Nyima T. Transcriptome analysis revealed the drought- responsive genes in Tibetan hulless barley. BMC Genomics, 2016, 17: 386.
[10] Xiong J Y, Chen D Y, Su T T, Shen Q F, Wu D Z, Zhang G P. Genome-wide identification, expression pattern and sequence variation analysis of SnRK family genes in barley. Plants (Basel), 2022, 11: 975.
[11] Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol, 2006, 60: 51-68.
pmid: 16463099
[12] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi- Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78.
[13] 关范圆, 郑语嫣, 米芯雨, 范菁, 王宝纬, 王晓晖. R2R3型MYB转录因子调控植物胁迫应答的研究进展. 植物医学, 2024, 3(3): 1-9.
Guan F Y, Zheng Y Y, Mi X Y, Fan J, Wang B W, Wang X H. Research advance of the functions of R2R3-MYB transcription factors in plant response to biotic and abiotic stresses. Plant Health Med, 2024, 3(3): 1-9 (in Chinese with English abstract).
[14] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定. 作物学报, 2024, 50: 76-88.
doi: 10.3724/SP.J.1006.2024.33007
Wang L P, Wang X Y, Fu J Y, Wang Q. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants. Acta Agron Sin, 2024, 50: 76-88 (in Chinese with English abstract).
[15] Rahaie M, Xue G P, Naghavi M R, Alizadeh H, Schenk P M. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes. Plant Cell Rep, 2010, 29: 835-844.
doi: 10.1007/s00299-010-0868-y pmid: 20490502
[16] Zheng L, Kong Y N, Yan X C, Liu Y X, Wang X R, Zhang J P, Qi X L, Cao X Y, Zhang S X, Liu Y W, et al. TaMYB-CC5 gene specifically expressed in root improve tolerance of phosphorus deficiency and drought stress in wheat. Plant Physiol Biochem, 2024, 215: 109011.
[17] Wei Q H, Zhang F, Sun F S, Luo Q C, Wang R B, Hu R, Chen M J, Chang J L, Yang G X, He G Y. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants. Plant Sci, 2017, 265: 112-123.
[18] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138-1152.
[19] Qu X X, Zou J J, Wang J X, Yang K Z, Wang X Q, Le J. A rice R2R3-type MYB transcription factor OsFLP positively regulates drought stress response via OsNAC. Int J Mol Sci, 2022, 23: 5873.
[20] Park M Y, Kang J Y, Kim S Y. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol Cells, 2011, 31: 447-454.
[21] Li X M, Zhong M, Qu L N, Yang J X, Liu X Q, Zhao Q, Liu X M, Zhao X Y. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. Plant Sci, 2021, 310: 110983.
[22] Zhao Y, Cheng X Y, Liu X D, Wu H F, Bi H H, Xu H X. The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Front Plant Sci, 2018, 9: 1426.
doi: 10.3389/fpls.2018.01426 pmid: 30323824
[23] Peng D, Li L Q, Wei A S, Zhou L, Wang B X, Liu M L, Lei Y H, Xie Y Z, Li X J. TaMYB44-5A reduces drought tolerance by repressing transcription of TaRD22-3A in the abscisic acid signaling pathway. Planta, 2024, 260: 52.
doi: 10.1007/s00425-024-04485-0 pmid: 39003354
[24] Tombuloglu H, Kekec G, Sakcali M S, Unver T. Transcriptome- wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. Mol Genet Genomics, 2013, 288: 141-155.
doi: 10.1007/s00438-013-0740-1 pmid: 23539153
[25] Chen L, Cui Y M, Yao Y H, An L K, Bai Y X, Li X, Yao X H, Wu K L. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.). BMC Genomics, 2023, 24: 166.
doi: 10.1186/s12864-023-09240-5 pmid: 37016311
[26] Strygina K V, Börner A, Khlestkina E K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biol, 2017, 17: 184.
doi: 10.1186/s12870-017-1122-3 pmid: 29143621
[27] Himi E, Yamashita Y, Haruyama N, Yanagisawa T, Maekawa M, Taketa S. Ant28 gene for proanthocyanidin synthesis encoding the R2R3 MYB domain protein (Hvmyb10) highly affects grain dormancy in barley. Euphytica, 2012, 188: 141-151.
[28] Seven M, Akdemir H. DOF, MYB and TCP transcription factors: their possible roles on barley germination and seedling establishment. Gene Expr Patterns, 2020, 37: 119116.
[29] Alexander R D, Wendelboe-Nelson C, Morris P C. The barley transcription factor HvMYB1 is a positive regulator of drought tolerance. Plant Physiol Biochem, 2019, 142: 246-253.
[30] Zhang W Y, Tan C, Hu H F, Pan R, Xiao Y H, Ouyang K, Zhou G F, Jia Y, Zhang X Q, Hill C B, et al. Genome architecture and diverged selection shaping pattern of genomic differentiation in wild barley. Plant Biotechnol J, 2023, 21: 46-62.
[31] Chang C W, Fridman E, Mascher M, Himmelbach A, Schmid K. Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant. Heredity, 2022, 128: 107-119.
[32] Pan R, Buitrago S, Feng Z B, Abou-Elwafa S F, Xu L, Li C D, Zhang W Y. HvbZIP21, a novel transcription factor from wild barley confers drought tolerance by modulating ROS scavenging. Front Plant Sci, 2022, 13: 878459.
[33] Yuan C, Li C, Yan L J, Jackson A O, Liu Z Y, Han C G, Yu J L, Li D W. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One, 2011, 6: e26468.
[34] Zhang Z Y, Liu X, Wang X D, Zhou M P, Zhou X Y, Ye X G, Wei X N. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytol, 2012, 196: 1155-1170.
[35] Li B Z, Liu R N, Liu J, Zhang H, Tian Y N, Chen T T, Li J X, Jiao F H, Jia T F, Li Y X, et al. ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings by regulating ZmTOM7 expression at the transcriptional level. New Crops, 2024, 1: 100012.
[36] Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008, 146: 623-635.
[37] Zhu N, Duan B L, Zheng H L, Mu R R, Zhao Y Y, Ke L P, Sun Y Q. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. Plant Physiol Biochem, 2023, 197: 107648.
[38] Lim J, Lim C W, Lee S C. Role of pepper MYB transcription factor CaDIM1 in regulation of the drought response. Front Plant Sci, 2022, 13: 1028392.
[39] Xu C Z, Fu X K, Liu R, Guo L, Ran L Y, Li C F, Tian Q Y, Jiao B, Wang B J, Luo K M. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol, 2017, 37: 1713-1726.
[40] Simeoni F, Skirycz A, Simoni L, Castorina G, de Souza L P, Fernie A R, Alseekh S, Giavalisco P, Conti L, Tonelli C, et al. The AtMYB60 transcription factor regulates stomatal opening by modulating oxylipin synthesis in guard cells. Sci Rep, 2022, 12: 533.
doi: 10.1038/s41598-021-04433-y pmid: 35017563
[41] Zhu Y F, Zhu G T, Xu R, Jiao Z X, Yang J W, Lin T, Wang Z, Huang S W, Chong L, Zhu J K. A natural promoter variation of SlBBX31 confers enhanced cold tolerance during tomato domestication. Plant Biotechnol J, 2023, 21: 1033-1043.
[42] Sun X M, Xiong H Y, Jiang C H, Zhang D M, Yang Z L, Huang Y P, Zhu W B, Ma S S, Duan J Z, Wang X, et al. Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun, 2022, 13: 4265.
[1] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[2] 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346.
[3] 郭飞翔, 李春霞, 周爽, 郭彬彬, 张均, 马超. 绿豆R2R3-MYB转录因子家族鉴定及其类黄酮合成调控基因的筛选[J]. 作物学报, 2025, 51(1): 117-133.
[4] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[5] 李闻娟, 王利民, 齐燕妮, 赵玮, 谢亚萍, 党照, 赵丽蓉, 李雯, 徐晨梦, 王琰, 张建平. 亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J]. 作物学报, 2024, 50(7): 1750-1761.
[6] 乔志新, 张杰道, 王雨, 郭启芳, 刘燕静, 陈蕊, 胡文浩, 孙爱清. 干旱胁迫下冬小麦不同品种萌发特性差异的研究[J]. 作物学报, 2024, 50(6): 1568-1583.
[7] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[8] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[9] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[10] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[11] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[12] 张逸宁, 张艳菲, 汪敏, 王景一, 李龙, 李超男, 杨德龙, 毛新国, 景蕊莲. 小麦转录因子基因TaPHR1参与调控每穗小穗数[J]. 作物学报, 2023, 49(12): 3176-3187.
[13] 靖小菁, 杨新笋, 靳晓杰, 刘意, 雷剑, 王连军, 柴沙沙, 张文英, 焦春海. 甘薯蔓割病(Fusarium oxysporum f. sp. batatas)相关基因IbMAPKK9的克隆与特性分析[J]. 作物学报, 2023, 49(12): 3289-3301.
[14] 张艳艳, 关涵文, 刘淋茹, 贺利, 段剑钊, 王晨阳, 郭天财, 冯伟. 不同水分条件下施磷对冬小麦穗花发育及产量的影响[J]. 作物学报, 2023, 49(10): 2753-2765.
[15] 王穆穆, 何艳芳, 郑永胜, 王晖, 王丽媛, 王东建, 张晗, 李汝玉. 水稻落粒基因SH8的精细定位与克隆[J]. 作物学报, 2022, 48(8): 1948-1956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!