欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2581-2594.doi: 10.3724/SP.J.1006.2025.54049

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小豆产量相关性状的基因型与环境互作效应及稳定性分析

胡亮亮1(), 周洪妹2(), 王晓磊3(), 王素华1, 李彩菊2, 魏云山3, 王丽侠1, 程须珍1,*(), 陈红霖1,*()   

  1. 1中国农业科学院作物科学研究所 / 农业农村部粮食作物基因资源评价利用重点实验室, 北京 100081
    2保定市农业科学院, 河北保定 071051
    3赤峰市农牧科学院, 内蒙古赤峰 024031
  • 收稿日期:2025-04-14 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-18
  • 通讯作者: *陈红霖, E-mail: chenhonglin@caas.cn;程须珍, E-mail: chengxuzhen@caas.cn
  • 作者简介:胡亮亮, E-mail: hu15101081634@163.com;
    周洪妹, E-mail: zhouhongmei-2001@163.com;
    王晓磊, E-mail: xiaolei2785@126.com
    **同等贡献
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-08-G04);中国农业科学院创新工程项目(01-ICS-07)

Analysis of genotype × environment interaction and stability of yield-related traits in adzuki bean (Vigna angularis)

HU Liang-Liang1(), ZHOU Hong-Mei2(), WANG Xiao-Lei3(), WANG Su-Hua1, LI Cai-Ju2, WEI Yun-Shan3, WANG Li-Xia1, CHENG Xu-Zhen1,*(), CHEN Hong-Lin1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Baoding Academy of Agricultural Sciences, Baoding 071051, Hebei, China
    3Chifeng Academy of Agricultural and Animal Husbandry, Chifeng 024031, Inner Mongolia, China
  • Received:2025-04-14 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-18
  • Contact: *E-mail: chenhonglin@caas.cn;E-mail: chengxuzhen@caas.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-08-G04);Innovation Program of the Chinese Academy of Agricultural Sciences(01-ICS-07)

摘要:

为明确我国小豆主栽品种的产量潜力、适应性与稳定性, 并指导区域化应用与育种, 本研究于2022年和2023年在我国主要产区遴选8个代表性生态试验点, 对15个小豆基因型进行了多点试验。运用联合方差分析、相关性分析、加性主效应与乘性互作(AMMI)模型及基因型与环境互作效应(GGE)双标图等方法, 对产量及相关农艺性状进行了系统评价。联合方差分析结果表明, 环境是影响除百粒重外各性状变异的主要驱动因素, 百粒重主要受基因型控制。基因型与环境互作效应对产量和主茎分枝数影响极显著。相关性分析显示, 单株荚数是决定产量的关键因子, 二者呈极显著正相关。AMMI与GGE分析揭示了显著的基因型×环境互作效应, 明确了基因型的特定适应区域与稳定性差异。综合评价显示, 赤红3号(G5)表现出高产潜力, 最接近理想基因型; 保红201429-8(G8)等基因型兼具高产与稳产特性;环境评价表明, 榆林(E5)试验点因其优良的代表性和区分能力, 被鉴定为理想测试环境。本研究表明, 环境效应对小豆产量性状具有显著影响, 基因型与环境互作是品种选育和推广中充分考量的关键因素,且单株荚数可作为小豆高产育种的核心选择指标。本研究为我国小豆育种策略的优化和品种的精准推广提供了关键数据支持与科学指导。

关键词: 小豆, 产量相关性状, 基因型与环境互作, 稳定性, GGE双标图

Abstract:

To evaluate the yield potential, adaptability, and stability of major cultivated adzuki bean varieties in China—and to provide guidance for regional application and breeding strategies—this study conducted multi-location trials involving 15 adzuki bean genotypes across eight representative ecological testing sites in major production areas during 2022 and 2023. A combination of joint variance analysis, correlation analysis, the additive main effects and multiplicative interaction (AMMI) model, and genotype-by-environment interaction (GGE) biplot analysis was used to comprehensively assess yield and related agronomic traits. The results from the combined ANOVA showed that environmental factors were the primary drivers of variation in all traits except 100-seed weight, which was mainly influenced by genotype. The genotype × environment (G×E) interaction had a highly significant effect on yield and the number of main stem branches. Correlation analysis indicated that yield was strongly positively correlated with the number of pods per plant, identifying it as the core factor determining yield. AMMI and GGE analyses precisely revealed complex G×E interaction patterns, clarifying the specific adaptation zones and stability differences among genotypes. Comprehensive evaluation showed that genotype G5 exhibited high yield potential and was closest to an ideal genotype; genotypes such as G8 possessed both high yield and stable performance. Environmental assessment indicated that the Yulin (E5) testing site, owing to its excellent representativeness and discrimination ability, was identified as an ideal testing environment. Overall, the study confirms that environmental effects play a dominant role in shaping yield-related traits in adzuki bean, and that genotype × environment interaction must be fully considered in variety selection and promotion, and the number of pods per plant can serve as a core selection index for high-yield breeding. This study provides key data support and scientific guidance for the optimization of adzuki bean breeding strategies and the precise promotion of varieties in China.

Key words: adzuki bean (Vigna angularis), yield-related traits, genotype × environment interaction (G×E), stability, GGE biplot

表1

供试小豆品种(系)信息"

编号
No.
品种(系)名称
Varieties (lines) name
来源地
Origin
G1 龙11-203 Long 11-203 黑龙江哈尔滨 Harbin, Heilongjiang
G2 H1007 吉林长春 Changchun, Jilin
G3 195-609 黑龙江齐齐哈尔 Qiqihar, Heilongjiang
G4 辽红08704-05 Liaohong 08704-05 辽宁沈阳 Shenyang, Liaoning
G5 赤红3号 Chihong 3 内蒙古赤峰 Chifeng, Inner Mongolia
G6 品红2020-4-7-2 Pinhong 2020-4-7-2 北京 Beijing
G7 冀红0921反-4-1-3-3-4 Jihong 0921 fan-4-1-3-3-4 河北石家庄 Shijiazhuang, Hebei
G8 保红201429-8 Baohong 201429-8 河北保定 Baoding, Hebei
G9 唐红201301-2 Tanghong 201301-2 河北唐山 Tangshan, Hebei
G10 同红7号 Tonghong 7 山西大同 Datong, Shanxi
G11 苏红17-606 Suhong 17-606 江苏南京 Nanjing, Jiangsu
G12 桂红20-21-1 Guihong 20-21-1 广西南宁 Nanning, Guangxi
G13 冀红352 Jihong 352 河北石家庄 Shijiazhuang, Hebei
G14 吉红14号 Jihong 14 吉林长春 Changchun, Jilin
G15 保红947 Baohong 947 河北保定 Baoding, Hebei

表2

各试验点基本信息及小豆生育期内主要气候数据"

地点
Location
海拔
Altitude
(m)
土壤类型
Soil type
降雨量
Precipitation (mm)
生育期日照时数
Sunshine hours
(h)
生育期平均温度
Average temperature (℃)
黑龙江哈尔滨 Harbin, Heilongjiang 147.0 黑土 Black soil 554.0 1334.1 17.6
辽宁沈阳 Shenyang, Liaoning 45.0 黑土 Black soil 464.0 887.9 22.9
内蒙古赤峰 Chifeng, Inner Mongolia 730.0 黏壤土 Clay loam 400.0 1325.6 21.0
山西太原 Taiyuan, Shanxi 781.3 褐土 Cinnamon soil 256.8 1582.0 22.1
陕西榆林 Yulin, Shaanxi 1122.7 沙壤土 Sandy loam 220.6 1237.6 20.5
河北保定 Baoding, Hebei 20.0 壤土 Loam 828.0 1598.6 23.6
江苏南京 Nanjing, Jiangsu 11.0 轻黏土 Light clay 412.4 1051.4 26.8
贵州毕节 Bijie, Guizhou 1640.0 黄壤土 Yellow loam 469.5 859.4 21.2

表3

参试小豆基因型产量相关性状表型统计"

基因型
Genotype
参数
Parameter
株高
PH (cm)
主茎分枝数
NPB
单株荚数
PPP
单荚粒数
SPP
百粒重
HSW (g)
产量
YD (kg hm-2)
G1 最小值 Min. 28.5 1.3 14.4 6.5 7.30 284.4
最大值 Max. 55.7 5.5 51.6 12.0 12.22 2273.1
平均值±标准差 Mean±SD 42.7±9.1 3.1±1.2 27.7±13.3 8.1±1.7 9.50±1.73 1283.4±627.8
G2 最小值 Min. 30.1 1.5 15.3 5.1 10.73 735.4
最大值 Max. 77.2 4.7 43.5 11.7 15.40 2235.8
平均值±标准差 Mean±SD 50.7±16.9 3.0±0.9 26.9±9.9 7.3±1.8 13.44±1.84 1435.2±459.6
G3 最小值 Min. 25.9 0.6 17.6 5.5 8.21 775.5
最大值 Max. 67.9 4.5 55.7 11.5 12.98 2717.5
平均值±标准差 Mean±SD 49.9±15.9 2.2±1.2 32.2±13.2 7.8±1.6 10.06±1.54 1560.0±562.0
G4 最小值 Min. 32.4 1.1 13.4 5.0 10.64 880.5
最大值 Max. 68.0 3.2 49.8 11.6 13.93 2277.8
平均值±标准差 Mean±SD 48.5±14.8 2.4±0.6 27.8±11.6 8.1±1.8 12.34±1.03 1469.2±379.2
G5 最小值 Min. 28.7 1.3 12.1 4.8 7.84 940.5
最大值 Max. 70.7 4.0 49.5 11.1 13.42 2623.5
平均值±标准差 Mean±SD 47.0±14.3 2.7±0.9 32.6±11.5 7.4±1.7 11.24±1.81 1560.3±472.0
G6 最小值 Min. 36.0 1.5 11.5 4.9 12.64 944.2
最大值 Max. 92.5 3.7 37.9 11.0 21.93 2291.8
平均值±标准差 Mean±SD 56.0±17.3 2.8±0.7 27.8±8.5 7.2±1.7 16.51±2.99 1575.2±447.5
G7 最小值 Min. 29.1 1.8 12.9 4.2 13.10 703.4
最大值 Max. 66.7 4.2 37.3 10.0 23.05 2150.6
平均值±标准差 Mean±SD 48.2±13.7 3.1±0.8 24.0±8.4 6.9±1.5 17.69±2.94 1564.1±474.2
G8 最小值 Min. 27.8 1.6 13.6 5.1 15.36 990.5
最大值 Max. 73.9 4.8 38.3 9.8 20.51 2255.1
平均值±标准差 Mean±SD 48.9±13.2 2.8±0.9 28.2±7.9 6.9±1.3 16.52±1.63 1597.4±418.1
G9 最小值 Min. 31.0 1.9 14.1 5.0 12.21 725.4
最大值 Max. 86.5 5.0 36.9 10.8 17.90 2136.8
平均值±标准差 Mean±SD 61.8±17.7 3.0±1.0 25.0±7.1 7.4±1.5 14.00±1.61 1540.8±444.0
G10 最小值 Min. 25.2 1.7 13.4 5.0 9.40 895.5
最大值 Max. 83.4 4.6 39.1 9.0 14.89 1898.1
平均值±标准差 Mean±SD 49.3±17.1 3.2±1.0 28.1±8.2 6.7±1.2 12.76±1.81 1496.7±311.7
G11 最小值 Min. 38.8 1.1 12.6 4.9 12.22 349.8
最大值 Max. 68.1 4.2 40.4 10.6 19.02 2037.5
平均值±标准差 Mean±SD 50.9±9.5 2.8±0.9 24.2±9.2 7.0±1.6 15.79±2.16 1407.6±550.2
G12 最小值 Min. 31.4 1.6 10.1 5.2 10.15 784.5
最大值 Max. 70.1 3.7 37.3 11.6 13.50 1892.9
平均值±标准差 Mean±SD 49.0±13.7 2.9±0.8 25.0±8.8 7.4±1.7 12.16±1.13 1285.8±352.2
G13 最小值 Min. 34.0 1.9 15.4 5.5 10.32 822.4
最大值 Max. 96.6 4.3 36.6 9.7 18.59 2256.5
平均值±标准差 Mean±SD 59.4±20.4 2.9±0.8 26.1±7.9 7.0±1.2 13.91±2.55 1492.0±432.3
G14 最小值 Min. 29.7 1.7 14.1 5.0 8.17 558.3
最大值 Max. 84.2 3.8 34.0 10.6 21.54 2167.4
平均值±标准差 Mean±SD 53.6±20.0 2.6±0.8 24.6±7.5 7.1±1.5 13.88±4.26 1334.2±509.7
G15 最小值 Min. 42.8 2.2 7.1 4.6 12.42 700.3
最大值 Max. 104.9 5.2 41.7 10.2 19.86 1903.8
平均值±标准差 Mean±SD 66.4±18.3 3.8±0.9 22.4±11.8 6.7±1.6 15.52±2.40 1274.5±509.9
变异系数 CV (%) 32.42 33.96 40.52 12.32 18.66 33.13

图1

不同试验点环境对小豆产量相关性状的影响 缩写同表3。不同小写字母代表在0.05水平上差异显著。E1: 黑龙江哈尔滨; E2: 辽宁沈阳; E3: 内蒙古赤峰; E4: 山西太原; E5: 陕西榆林; E6: 河北保定; E7: 江苏南京; E8: 贵州毕节。"

表4

小豆基因型产量相关性状的联合方差分析"

性状
Trait
变异来源
Source of variation
自由度
df
平方和
Sum of square
F
F-value
显著性
Significance
株高PH 基因型 G 14 8757.30 1.74 0.056
环境 E 7 47,685.36 18.90 < 0.001***
基因型×环境 G×E 98 12,145.80 0.35 1.000
区组内误差 Pooled error 240 43,160.69
总变异 Total 359 111,749.14
主茎分枝数NPB 基因型 G 14 29.92 3.73 < 0.001***
环境 E 7 142.63 35.52 < 0.001***
基因型×环境 G×E 98 58.35 1.04 <0.001***
区组内误差 Pooled error 240 68.84
总变异 Total 359 299.74
单株荚数PPP 基因型 G 14 1825.36 3.35 < 0.001***
环境 E 7 13,980.50 51.37 < 0.001***
基因型×环境 G×E 98 9420.68 2.47 < 0.001***
区组内误差 Pooled error 240 4665.51
总变异 Total 359 29,892.04
单荚粒数SPP 基因型 G 14 44.38 1.70 0.061
环境 E 7 527.86 40.80 < 0.001***
基因型×环境 G×E 98 58.36 0.32 1.000
区组内误差 Pooled error 240 221.77
总变异 Total 359 852.36
百粒重HSW 基因型 G 14 1307.25 10.47 < 0.001***
环境 E 7 710.17 11.37 < 0.001***
基因型×环境 G×E 98 498.46 0.57 0.002**
区组内误差 Pooled error 240 1070.38
总变异 Total 359 3586.26
产量YD 基因型 G 14 2,993,689.81 0.62 0.842
环境 E 7 33,520,298.83 13.94 < 0.001***
基因型×环境 G×E 98 19,525,446.10 0.58 < 0.001***
区组内误差 Pooled error 240 41,222,158.09
总变异 Total 359 97,261,592.83

表5

小豆基因型产量的AMMI模型变异分析"

变异来源
Source of variation
自由度
df
平方和
Sum of squares
占互作平方和百分比
Percentage of interaction G×E SS (%)
F
F-value
显著性
Significance
IPCA1 20 9,409,871.20 48.19 8.66 < 0.001***
IPCA2 18 4,918,514.10 25.19 5.03 < 0.001***
IPCA3 16 2,009,715.90 10.29 2.31 0.006**
IPCA4 14 1,685,746.10 8.63 2.22 0.011*
残差 Residual 30 1,501,598.70 7.69

图2

小豆产量的AMMI双标图 A: AMMI1双标图; B: AMMI2双标图。G1~G15代表基因型, E1~E8代表试验环境。YD: 产量。"

图3

小豆产量相关性状的GGE分析双标图多边形视图 A: 株高; B: 主茎分枝数; C: 单株荚数; D: 单荚粒数: E: 百粒重; F: 产量。G1~G15代表基因型, E1~E8代表试验环境。"

图4

小豆产量相关性状的GGE双标图平均表现与稳定性视图 A: 株高; B: 主茎分枝数; C: 单株荚数; D: 单荚粒数: E: 百粒重; F: 产量。G1~G15代表基因型, E1~E8代表试验环境。"

图5

基于GGE双标图的理想基因型(A)和理想环境(B)评估(以产量为例) G1~G15代表基因型, E1~E8代表试验环境。G1-G15 represent genotypes; E1-E8 represent environments."

图6

小豆产量相关性状间的Pearson相关性分析热图 缩写同表3。颜色深浅和数值表示相关系数大小。*、**、***分别表示在0.05、0.01、0.001水平上显著相关。"

[1] Wang Y, Yao X M, Shen H F, Zhao R, Li Z B, Shen X T, Wang F, Chen K X, Zhou Y, Li B, et al. Nutritional composition, efficacy, and processing of Vigna angularis (adzuki bean) for the human diet: an overview. Molecules, 2022, 27: 6079.
[2] Mukai Y, Sato S. Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. J Nutr Biochem, 2011, 22: 16-21.
doi: 10.1016/j.jnutbio.2009.11.004 pmid: 20185287
[3] Kitano-Okada T, Ito A, Koide A, Nakamura Y, Han K H, Shimada K, Sasaki K, Ohba K, Sibayama S, Fukushima M. Anti-obesity role of adzuki bean extract containing polyphenols: in vivo and in vitro effects. J Sci Food Agric, 2012, 92: 2644-2651.
[4] Liu L, Bestel S, Shi J M, Song Y H, Chen X C. Paleolithic human exploitation of plant foods during the last glacial maximum in North China. Proc Natl Acad Sci USA, 2013, 110: 5380-5385.
doi: 10.1073/pnas.1217864110 pmid: 23509257
[5] 程须珍, 田静, 王丽侠, 陈红霖, 王素华. 中国食用豆类品种志第二辑. 北京: 科学出版社, 2023. p 138.
Cheng X Z, Tian J, Wang L X, Chen H L, Wang S H. Annals of Chinese Legume Varieties, Volume II. Beijing: Science Press, 2023. p 138 (in Chinese).
[6] 韩昕儒, 宋莉莉. 我国绿豆、小豆生产特征及产业发展趋势. 中国农业科技导报, 2019, 21(8): 1-10.
doi: 10.13304/j.nykjdb.2018.717
Han X R, Song L L. Study on production and consumption characteristics and industrial development trends of mung bean and adzuki bean in China. J Agric Sci Technol, 2019, 21(8): 1-10 (in Chinese with English abstract).
[7] Tomooka N, Vaughan D A, Moss H, Maxted N. The Asian Vigna:Genus Vigna Subgenus Ceratotropis Genetic Resources. Boston: Kluwa Academic Press, 2003. p 1.
[8] Maranna S, Nataraj V, Kumawat G, Mehetre S P, Reddy R, Jaybhay S, Suresh P G, Rathod S, Agrawal N, Rajesh V, et al. Understanding of G × E interactions of yield attributes in soybean MAGIC population and characterization for charcoal rot resistance. Agron J, 2024, 116: 1290-1301.
[9] Das S, Majhi P K, Sahoo K C, Tudu S, Ray M, Mishra N. Genotype-by-environment (G × E) interaction and grain yield stability analysis for selected genotypes of desi chickpea (Cicer arietinum L.) by using AMMI model. Legume Res Int J, 2024, 47: 1958-1963.
[10] Sumalini K, Pradeep T, Sravani D. G × E interaction studies in relation to heterosis and stability of grain yield in maize (Zea mays L.). Indian J Genet Plant Breed, 2020, 80: 250-260.
[11] 吴为人. 多环境试验中质量-数量性状的遗传分析. 作物学报, 1999, 25: 723-726.
Wu W R. Genetic analysis of qualitative-quantitative trait in multiple-environment experiments. Acta Agron Sin, 1999, 25: 723-726 (in Chinese with English abstract).
[12] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价. 作物学报, 2023, 49: 1231-1248.
doi: 10.3724/SP.J.1006.2023.23035
Yue H W, Han X, Wei J W, Zheng S H, Xie J L, Chen S P, Peng H C, Bu J Z. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis. Acta Agron Sin, 2023, 49: 1231-1248 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.23035
[13] 董伟欣. 北方夏播区19个小豆品种的特征特性. 农技服务, 2020, 37(5): 91-94.
Dong W X. The characteristics of 19 adzuki bean varieties in the summer sowing area of Northern China. Agric Technol Serv, 2020, 37(5): 91-94 (in Chinese).
[14] 范保杰, 刘长友, 王彦, 张志肖, 苏秋竹, 王珅, 刘阳, 田静. 冀红17号新品种选育及高产高效配套栽培技术. 现代农村科技, 2021, (7): 14-15.
Fan B J, Liu C Y, Wang Y, Zhang Z X, Su Q Z, Wang S, Liu Y, Tian J. Breeding of a new variety named Jihong 17 and its supporting cultivation techniques for high yield and high efficiency. Xian Dai Nong Cun Ke Ji, 2021, (7): 14-15 (in Chinese).
[15] 王洪皓, 沈宝宇, 赵秋. 特大粒红小豆辽红小豆8号特征特性及栽培技术. 现代农业科技, 2013, 17: 56-58.
Wang H H, Shen B Y, Zhao Q. Characteristics and cultivation techniques of Liaohongxiaodou No.8, an extra-large grain adzuki bean variety. Mod Agric Sci Technol, 2013, 17: 56-58 (in Chinese).
[16] 孟宪欣, 王强, 魏淑红, 张威. 小豆新品种龙小豆4号选育及栽培要点. 黑龙江农业科学, 2016, (5): 160.
Meng X X, Wang Q, Wei S H, Zhang W. Breeding of a new adzuki bean variety Longxiaodou No. 4 and its key cultivation points. Heilongjiang Agric Sci, 2016, (5): 160 (in Chinese).
[17] Olivoto T, Lúcio A D C, Silva J A G, Marchioro V S, Souza V Q, Jost E. Mean performance and stability in multi-environment trials I: combining features of AMMI and BLUP techniques. Agron J, 2019, 111: 2949-2960.
doi: 10.2134/agronj2019.03.0220
[18] 胡亮亮, 陈燕华, 王成, 陈天晓, 曹榕, 宋倩楠, 王素华, 罗高玲, 申惠波, 王丽侠, 等. 小豆种质资源产量性状的多环境评价与优异种质筛选. 植物遗传资源学报, 2025, 26: 1342-1354.
Hu L L, Chen Y H, Wang C, Chen T X, Cao R, Song Q N, Wang S H, Luo G L, Shen H B, Wang L X, et al. Multi-environment evaluation and elite germplasm selection for yield traits in adzuki bean (Vigna angularis). J Plant Genet Resour, 2025, 26: 1342-1354 (in Chinese with English abstract).
[19] Piepho H P, Blancon J. Extending Finlay-Wilkinson regression with environmental covariates. Plant Breed, 2023, 142: 621-631.
[20] Anputhas M, Samita S, Abeysiriwardena D S. Stability and adaptability analysis of rice cultivars using environment-centered yield in two-way ANOVA model. Commun Biol Crop Sci, 2011, 6: 80-86.
[21] Gauch H G Jr. A simple protocol for AMMI analysis of yield trials. Crop Sci, 2013, 53: 1860-1869.
[22] 张泽, 鲁成, 向仲怀. 基于AMMI模型的品种稳定性分析. 作物学报, 1998, 24: 304-309.
Zhang Z, Lu C, Xiang Z H. Analysis of variety stability based on AMMI model. Acta Agron Sin, 1998, 24: 304-309 (in Chinese with English abstract).
[23] Gauch H G Jr. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488-1500.
[24] 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1805-1819.
doi: 10.3724/SP.J.1006.2010.01805
Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agron Sin, 2010, 36: 1805-1819 (in Chinese with English abstract).
[25] 王磊, 程本义, 鄂志国, 杨仕华. 基于GGE双标图的水稻区试品种丰产性、稳产性和适应性评价. 中国水稻科学, 2015, 29: 408-416.
doi: 10.3969/j.issn.1001G7216.2015.04.010
Wang L, Cheng B Y, E Z G, Yang S H. Use of GGE biplots in the yielding ability, stability and adaptation evaluation for the varieties in the rice regional trials. Chin J Rice Sci, 2015, 29: 408-416 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001G7216.2015.04.010
[26] 鲁月, 张子惠, 陆洲, 王淑婷, 郝德荣, 李鹏程, 徐扬, 徐辰武, 陆虎华, 杨泽峰. 基于AMMI模型和GGE双标图对江苏省甜玉米区域试验的分析. 分子植物育种, 2022, 20: 6939-6946.
Lu Y, Zhang Z H, Lu Z, Wang S T, Hao D R, Li P C, Xu Y, Xu C W, Lu H H, Yang Z F. Analysis of the regional trial for sweet maize in Jiangsu province based on the AMMI model and GGE biplot. Mol Plant Breed, 2022, 20: 6939-6946 (in Chinese with English abstract).
[27] 张志芬, 付晓峰, 刘俊青, 杨海顺. 用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性. 作物学报, 2010, 36: 1377-1385.
doi: 10.3724/SP.J.1006.2010.01377
Zhang Z F, Fu X F, Liu J Q, Yang H S. Yield stability and testing-site representativeness in national regional trials for oat lines based on GGE-biplot analysis. Acta Agron Sin, 2010, 36: 1377-1385 (in Chinese with English abstract).
[28] 程须珍, 王素华, 王丽侠. 小豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 17-21.
Cheng X Z, Wang S H, Wang L X. Descriptions and Data Standard for Adzuki Bean (Vigna angularis). Beijing: China Agriculture Press, 2006. pp 17-21 (in Chinese).
[29] Wei T Y, Simko V, Levy M, Xie Y H, Jin Y, Zemla J. Package ‘corrplot'. Statistician, 2017, 56: e24.
[30] F de Mendiburu Delgado. Agricolae: statistical procedures for agricultural research. R package version 1.3-1, https://www.researchgate.net/publication/303256192_Agricolae_Statistical_ Procedures_for_Agricultural_Research (accessed January 30, 2020).
[31] Yan W K, Tinker N A. Biplot analysis of multi-environment trial data: principles and applications. Can J Plant Sci, 2006, 86: 623-645.
[32] 朱军. 包括基因型×环境互作效应的种子遗传模型及其分析方法. 遗传学报, 1996, 23(1): 56-68.
Zhu J. Seed genetic model including genotype × environment interaction effect and its analysis method. J Genet Genomics, 1996, 23(1): 56-68 (in Chinese).
[33] 陈亚光, 杨雨阳, 昝凯, 王凤菊. 黄淮海11个夏大豆品种(系)产量稳定性和适应性分析. 大豆科学, 2024, 43(2): 159-166.
Chen Y G, Yang Y Y, Zan K, Wang F J. Stability and adaptability analysis on yield of eleven summer soybean varieties (lines) in Huang-Huai-Hai region. Soybean Sci, 2024, 43(2): 159-166 (in Chinese with English abstract).
[34] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析. 作物学报, 2024, 50: 149-160.
doi: 10.3724/SP.J.1006.2024.24265
Shao Y, Guo Y P, Zhou B Y, Zhang F, Zhang X M, Wang Y P. Analysis of genotype × environment interaction and stability of yield components in faba bean lines. Acta Agron Sin, 2024, 50: 149-160 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.24265
[35] 金文林, 白璐, 文自翔, 濮绍京, 赵波. 小豆百粒重性状遗传体系分析. 作物学报, 2006, 32: 1410-1412.
Jin W L, Bai L, Wen Z X, Pu S J, Zhao B. Analysis on genetic system of 100-seed weight in adzuki bean. Acta Agron Sin, 2006, 32: 1410-1412 (in Chinese with English abstract).
[36] Hu L L, Luo G L, Zhu X, Wang S H, Wang L X, Cheng X Z, Chen H L. Genetic diversity and environmental influence on yield and yield-related traits of adzuki bean (Vigna angularis L.). Plants, 2022, 11: 1132.
[37] 白鹏, 程须珍, 王丽侠, 王素华, 陈红霖. 小豆种质资源农艺性状综合鉴定与评价. 植物遗传资源学报, 2014, 15: 1209-1215.
doi: 10.13430/j.cnki.jpgr.2014.06.007
Bai P, Cheng X Z, Wang L X, Wang S H, Chen H L. Evaluation in agronomic traits of adzuki bean accessions. J Plant Genet Resour, 2014, 15: 1209-1215 (in Chinese with English abstract).
[38] 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价. 作物学报, 2018, 44: 357-368.
doi: 10.3724/SP.J.1006.2018.00357
Wang L F, Wu J, Wang Z L, Chen J B, Yu L, Wang Q, Wang S M. Adaptability and phenotypic variations of agronomic traits in common bean germplasm resources in different environments. Acta Agron Sin, 2018, 44: 357-368 (in Chinese with English abstract).
[39] Fan F F, Liu M M, Li N N, Guo Y, Yuan H R, Si F F, Cheng M X, Chen G L, Cai M, Li N W, et al. Gain-of-function allele of HPY1 coordinates source and sink to increase grain yield in rice. Sci Bull, 2023, 68: 2155-2159.
[1] 邹逸淼, 于湘萍, 苗玉聪, 蔡倩, 杜桂娟, 赵凤艳, 张诗雨, 李双异, 白伟. 耕层构造后东北旱作农田土壤有机碳组分积累及其稳定性特征[J]. 作物学报, 2025, 51(5): 1277-1285.
[2] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[3] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[4] 岳海旺, 魏建伟, 刘朋程, 陈淑萍, 卜俊周. 基于GYT双标图分析对黄淮海生态区玉米品种综合评价[J]. 作物学报, 2024, 50(4): 836-856.
[5] 王昀杰, 樊志龙, 张刁亮, 毛守发, 胡发龙, 殷文, 柴强. 不同灌水量下玉米的产量可持续性对间作绿肥的响应[J]. 作物学报, 2024, 50(10): 2562-2574.
[6] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析[J]. 作物学报, 2024, 50(1): 149-160.
[7] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[8] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[9] 姜骁, 许静, 潘丽娟, 陈娜, 王通, 江晓东, 殷祥贞, 杨珍, 禹山林, 迟晓元. 花生产量相关性状与气象因子多环境相关性分析[J]. 作物学报, 2023, 49(11): 3110-3121.
[10] 严威凯. 品种选育与评价的原理和方法评述[J]. 作物学报, 2022, 48(9): 2137-2154.
[11] 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870.
[12] 柯希望, 苑梦琦, 徐晓丹, 殷丽华, 郭永霞, 左豫虎. 小豆Dirigent基因家族鉴定及锈菌侵染对不同成员表达的影响[J]. 作物学报, 2022, 48(11): 2774-2785.
[13] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[14] 项洪涛, 李琬, 郑殿峰, 王诗雅, 何宁, 王曼力, 杨纯杰. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J]. 作物学报, 2021, 47(3): 494-506.
[15] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!