欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (10): 1579-1585.

• 研究简报 • 上一篇    下一篇

基于临界氮浓度稀释模型的棉花开花后氮动态需求定量诊断研究

薛晓萍1,2;王以琳2;郭文琦1;陈兵林1;周治国1,*   

  1. 1南京农业大学/农业部作物生长调控重点开放试验室,江苏南京210095;2山东省气象中心,山东济南250031
  • 收稿日期:2006-11-29 修回日期:1900-01-01 出版日期:2006-10-12 网络出版日期:2006-10-12
  • 通讯作者: 周治国

Mathematical Model of Quantitative Diagnosis on Dynamic Nitrogen Demand of Cotton after Anthesis Based on Critical Nitrogen Concentration Diluation Model

XUE Xiao-Ping1 2,WANG Yi-Lin2,GUO Wen-Qi1,CHEN Bing-Lin1,ZHOU Zhi-Guo1 *   

  1. 1Key Laboratory of Crop Growth Regulation of the Ministry of Agriculture,Nanjing Agricultural University, Nanjing 210095,Jiangsu ;2Shandong Province Meteorological Centure,Jinan 250031,Shandong,China
  • Received:2006-11-29 Revised:1900-01-01 Published:2006-10-12 Published online:2006-10-12
  • Contact: ZHOU Zhi-Guo

摘要:

在大田栽培条件下,于江苏南京(长江中下游棉区)和河南安阳(黄淮棉区)设置棉花氮素水平试验,依据Justes的临界氮浓度稀释曲线确定方法,确立了开花后棉花地上干物质临界氮浓度稀释模型,以此为基础,建立了棉花开花后动态氮吸收、累积、临界需求量及氮累积亏缺的定量诊断模型。结果表明,安阳、南京2试点的棉株地上干物质氮浓度均随施氮水平的提高而增加,随开花后棉花生育进程的延后而降低,安阳试点不同施氮水平间棉株地上干物质氮浓度值的差值明显小于南京。临界氮浓度稀释模型为CNFNC=aⅹDMM-b(安阳:a=3.837,b=0.131,南京:a=2.858,b=0.131),参数a的差异表明在达到同样的生物量条件下,安阳试点的氮吸收能力大于南京。棉花开花后动态氮吸收速率、累积、临界需求量及氮累积适宜度的定量诊断模型可精确定量描述不同施氮水平棉花从开花至吐絮以日为时间步长的干物质增长速率、氮吸收速率、氮累积量。施氮水平对地上干物质瞬时增长速率有较大影响,施氮水平过低或过高时其增长速率均下降。棉株日氮吸收量和总氮累积量均随施氮量的增加而增加,但棉株对氮的容纳有一定的限度。通过对比2试点氮累积量与临界需氮量差值的动态变化,认为安阳试...

关键词: 棉花, 临界氮浓度, 生长速率, 氮吸收速率, 需氮量

Abstract: The critical nitrogen concentration of a plant can be defined as the minimum nitrogen concentration required for maximum biomass grown at any time. The critical nitrogen concentration dilution curve can be described by the power equationCNEN=a×DM-bM , FNC=aⅹDM-bM,where CNFNC(%) is the total nitrogen concentration in the aboveground dry matter,DMM is the aboveground biomass(mg·ha-1,a represents the nitrogen concentration in aboveground dry biomass when DMM =1 mg·ha-1 and b is a statistical parameter g...

Key words: Cotton, Critical nitrogen concentration, Growth rate, Nitrogen uptake rate, Nitrogen demand

中图分类号: 

  • S562
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 苏文楠, 解君, 韩娟, 刘铁宁, 韩清芳. 夏玉米不同部位干物质临界氮浓度稀释曲线的构建及对产量的估计[J]. 作物学报, 2021, 47(3): 530-545.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!