欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 432-437.doi: 10.3724/SP.J.1006.2009.00432

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

以SSR标记对普通菜豆抗炭疽病基因定位

王坤;王晓鸣;朱振东;赵晓彦;张晓艳;王述民   

  1. 中国农业科学院作物科学研究所/国家农作物基因资源与遗传改良重大科学工程,北京100081
  • 收稿日期:2008-08-29 修回日期:2008-12-07 出版日期:2009-03-12 网络出版日期:2009-01-16
  • 通讯作者: 王述民
  • 基金资助:

    本研究由国家科技支撑计划项目(2006BAD13B05)资助

Mapping of a Novel Anthracnose Resistance Gene Using SSR Markers in Common Bean(Phaseolus vulgaris L.)

WANG Kun;WANG Xiao-Ming;ZHU Zhen-Dong;ZHAO Xiao-Yan;WANG Shu-Min   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081,China
  • Received:2008-08-29 Revised:2008-12-07 Published:2009-03-12 Published online:2009-01-16
  • Contact: WANG Shi-Min

摘要:

由菜豆炭疽菌引起的菜豆炭疽病是危害我国菜豆生产的主要病害之一, 鉴定和发掘新的抗病基因对于菜豆抗病育种具有十分重要的意义。以来自安第斯基因库的我国菜豆抗炭疽病地方品种红花芸豆与感病地方品种京豆杂交的F2群体为试验材料, 通过人工接种菜豆炭疽菌81号小种进行抗病性鉴定, 发现该分离群体中抗病植株数与感病植株数符合3∶1的分离比例, 确定红花芸豆对菜豆炭疽菌81号小种的抗性由显性单基因控制, 将此基因命名为Co-F2533。用分离群体分组分析法(BSA)和微卫星多态性分析(SSR)技术对红花芸豆中的抗炭疽病基因进行分子标记鉴定, Mapmaker3.0计算标记与目的基因间的遗传距离, 发现B6连锁群上的4SSR标记BM170Clon1429BMD37Clon410与抗炭疽病基因Co-F2533连锁, 遗传距离分别为6.618.420.930.9 cM, 这些SSR标记与Co-F2533基因在B6连锁群上的排列顺序为Clon1429-Co-F2533- BM170-BMD37-Clon410。根据基因所在连锁群的位置、抗病基因的基因库来源可知Co-F2533是一个新的来源于安第斯基因库的抗炭疽病基因。

关键词: 普通菜豆, 菜豆炭疽病, 抗病基因, SSR标记

Abstract:

Anthracnose (Colletotrichum lindemuthianum) is one of the most important diseases of common bean throughout the world. Resistant cultivars utilization is the most economic, effective and environment harmless method to control this disease. However, disease resistance in the host is unsustainable due to the high variability of anthracnose. So it is necessary to explore the new resistance genes persistently. Among the 11 reported resistant loci, 10 of them originated from Mesoamerican gene pool and only one locus named Co-1 from Andean gene pool. The objective of this study was to identify the new Andean gene resistant to anthracnose in the Chinese common bean landraces. 108 F2 plants derived from a cross between common bean Red flower (R) and common bean Jing (S) were inoculated with anthracnose race 81. The resistant individuals grew well without obvious disease symptoms but the susceptible plants have many disease spots on the leaves and stems, and then died gradually. The segregation ratio of resistant to susceptible plants in F2 population was 3:1 based on chi-square test, indicating that the resistance of Red flowercommon bean to anthracnose race 81 was controlled by a single dominant gene, named as Co-F2533 temporarily. Four SSR markers were detected on B6 linkage group of common bean that linked to the resistance gene Co-F2533 with the distance of 6.6, 18.4, 20.9, and 30.9 cM respectively. The position of the resistance gene and the markers on the chromosome were as follows: Clon1429, Co-F2533, BM170, BMD37, and Clon410. A linkage map was constructedwith Mapdraw V2.1. Since the absent of anthracnose resistance genes on B6 linkage group, it is proposed that Co-F2533 is a novel anthracnose resistance gene in Chinese resistant landrace Red flower from Andean gene pool, which will be useful in the anthracnose resistance breeding for common bean.

Key words:   Common bean, Anthracnose, Resistant gene, SSR marker

[1] McClean P, Kami J, Gepts P. Genomics and genetic diversity in common bean. In: Wilson R F, Stalker T H, Brummer E C eds. Legume Crop Genomics. USA: AOCS Publishing, 2004. pp 61–82
[2] Zhong X-X(宗绪晓). High-Yield Cultivation and Consumption of Legume Food Processing (食用豆类高产栽培与食品加工). Beijing: China Agricultural Science and Technology Press, 2002. pp 227–246(in Chinese)
[3] Pastor-Corrales M A. Anthracnose. In: Pastor-Corrales M A, Tu J C, eds. Bean Production Problems in the Tropics. Centro Internacional de Agricultura Tropical, Cali, Colombia, 1989. pp 77–104
[4] Wang X-M(王晓鸣), Li Y-L(李怡琳), Li S-Y(李淑英). Study of identification the resistance to anthracnose of common bean germplasm. Crop Germplasm Resours (作物品种资源), 1989, (2): 18–19(in Chinese)
[5] Kelly J D, Vallejo V A. A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hort Sci, 2004, 39: 1196–1207
[6] Gepts P. A middle American and an Andean common bean gene pool. In: Gepts P ed. Genetic Resources of Phaseolus Beans. London: KIuwer, 1988. pp 375–390
[7] Kelly J D. Use of randomly amplified polymorphic DNA markers in breeding for major gene resistance to plant pathogens. J Am Soc Hort Sci, 1995, 30: 461–465
[8] Young R A, Kelly J D. Characterization of the genetic resistance to Colletotrichum lindemuthianum in common bean differential cultivars. Plant Dis, 1996, 80: 650–654
[9] Wu Q-A(吴全安). Identification of crops germplasm resources resistant to diseases and insect pests. Beijing: Agriculture Press, 1991. pp 60–61(in Chinese)
[10] Afanador L, Hadley S, Kelly J D. Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L). Annu Rept Bean Improv Coop, 1993, 36: 10–11
[11] Michelmore R M, Paran I, Kesseli R V. Identification of marker linked to disease- resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[12] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: An interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[13] Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175
[14] Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: A Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317–21(in Chinese with an English abstract)
[15] Wang X-M(王晓鸣), Li Y-L(李怡琳), Luo P-X(骆平西), Zhao-Y-L(赵玉玲). The resistance of Chinese dry bean germplasm. Crop Germplasm Resourse (作物品种资源), 1999, (1): 25–28(in Chinese)
[16] Xu Z-S(徐兆生), Wang M(王幕), Wei M(魏民), Yu H-J(余宏军). Inheritance of resistance to anthracnose in snapbean. China Vegetables (中国蔬菜), 1999, (4): 18–19(in Chinese)
[17] Zhao X-Y(赵晓彦). Identification of anthracnose resistant genes based on molecular markers and genetic diversity analysis of resistant germplasm in common bean. MS Dissertation of Chinese Academy of Agricultural Science, 2006(in Chinese with English abstract)
[18] Duran L A, Blair M W, Giraldo M C, Machiavelli R, Prophete E, Nin J C and Beaver J S. Morphological and molecular characterization of common bean (Phaseolus vulgaris L) landraces from the Caribbean. Crop Sci, 2005, 45: 1320–1328
[19] Evans A M. Structure, variation, evolution, and classification in Phaseolus. In: Summer R J, Bunting A H, eds. Advances in Legume Science. Royal Botanic Gardens, Kew, UK, 1980. pp 337–347
[20] Wang X-M(王晓鸣), Li Y-L(李怡琳), Wu X-F(武小菲). Pathogenic variant of Chinese Colletotrichum lindemuthianum. J Shandong Agric Univ (山东农业大学学报), 1999, 30(suppl): 125–129(in Chinese)
[21] Wang K(王坤), Wang X-M(王晓鸣), Zhu Z-D(朱振东), Zhang X-Y(张晓艳), Wang S-M(王述民). Identification of Colletotrichum lindemuthianum races and bean germplasm evaluation for anthracnose resistance in eight provinces of China. J Plant Genet Resour (植物遗传资源学报), 2008, 9(2): 168–172(in Chinese with English abstract)
[22] Melotto M, Coelho M F, Pedrosa-Harand A, Kelly J D, Camargo L E A. The anthracnose resistance locus Co-4 of common bean is located on chromosome 3 and contains putative disease resistance related genes. Thero Appl Genet, 2004, 109: 122–134
[23] Mendoza A, Hernández F, Hernández S, Ruíz D, Martínez de la Vega O, Mora G, Acosta J, Simpson J. Identification of Co-1 anthracnose resistance and linked molecular markers in common bean line A193. Plant Dis, 2001, 85: 252–255
[24] Young R A, Kelly J D. Tests of allelism for the anthracnose resistance Co-1 gene. Annu Rept Bean Improv Coop, 1997, 40: 128–129
[25] Yu K F, Park S J, Poysa V. Abundance and variation of microsatellite DNA sequences in beans (Phaseolus vulgaris L). Genome, 1999, 42: 27–34
[26] Yu K F, Park S J, Poysa V, Gepts P. Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). Heredity, 2000, 91: 429–434
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[4] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[5] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[6] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[7] 向文扬,杨永庆,任秋燕,晋彤彤,王丽群,王大刚,智海剑. 大豆抗SC3候选基因的克隆及分析[J]. 作物学报, 2019, 45(12): 1822-1831.
[8] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[9] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[10] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[11] 肖湘谊,史学涛,盛浩闻,刘金灵,肖应辉. 水稻抗稻瘟病基因Pi47的精细定位和候选基因分析[J]. 作物学报, 2018, 44(7): 977-987.
[12] 薛仁风, 王利, 丰明, 葛维德. 普通菜豆中烟草水杨酸结合蛋白2同源基因的鉴定及表达特征分析[J]. 作物学报, 2018, 44(05): 642-649.
[13] 王兰芬, 武晶, 王昭礼, 陈吉宝, 余莉, 王强, 王述民. 普通菜豆种质资源不同环境下表型差异及生态适应性评价[J]. 作物学报, 2018, 44(03): 357-368.
[14] 刘天鹏,董孔军,董喜存,何继红,刘敏轩,任瑞玉,张磊,杨天育. 12C6+离子束辐照糜子诱变突变群体的构建与SSR分析[J]. 作物学报, 2018, 44(01): 144-156.
[15] 耿庆河,王兰芬,武晶,王述民. 普通菜豆籽粒大小与形状的QTL定位[J]. 作物学报, 2017, 43(08): 1149-1160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!