欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 438-444.doi: 10.3724/SP.J.1006.2009.00438

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆抗烟粉虱的鉴定体系研究

徐冉12;李伟1;王彩洁1;张礼凤1;戴海英1;邢邯2*   

  1. 1山东省农业科学院作物研究所,山东济南250100;2南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2008-05-04 修回日期:2008-10-22 出版日期:2009-03-12 网络出版日期:2008-01-15
  • 通讯作者: 邢邯
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100104);国家科技支撑计划项目(2006BAD01A04)资助

Identification System of Resistance to Whitefly in Soybean

XU Ran12;LI Wei1;WANG Cai-Jie1;ZHANG Li-Feng1;DAI Hai-Ying1;XIANG Han2*   

  1. 1Crops Institute of Shandong Academy of Agricultural Science,Jinan 250100,Shandong;2 Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095,Jiangsu,China
  • Received:2008-05-04 Revised:2008-10-22 Published:2009-03-12 Published online:2008-01-15
  • Contact: XING Han

摘要:

2004年和2007年分别在济南、冠县两地对419份国内外大豆品种资源进行了抗烟粉虱鉴定, 综合分析23点自然虫源条件下各品种的鉴定结果和各种抗性鉴定指标之间的关系, 发现大豆感染烟粉虱的数量虽然受环境因素影响较大, 但特定品种的相对抗性表现稳定;筛选出滑皮豆等4个高抗和齐黄264个高感烟粉虱的标准品种, 确定了以烟粉虱若虫为调查对象, 以单叶感染烟粉虱若虫的平均数为抗性评价指标, 以标准品种该指标为参照, 当该指标<(a+d)时为高抗、≥(a+d)~<(a+3d)时为抗、≥(a+3d)~<(a+5d)时为中间、≥(a+5d)~ <(a+7d)时为感、≥(a+7d)时为高感, 其中d=(b–a)/8, ab分别为4份高抗和4份高感标准品种单叶烟粉虱的平均数。同时确定了顶部叶片为有限结荚习性品种的有效调查叶位, 中上部叶片为亚有限和无限结荚习性品种的有效调查叶位。

关键词: 大豆, 烟粉虱, 抗性, 鉴定方法, 评价标准

Abstract:

Whitefly (Bemisia tabaci Genn.) is an agricultural pests with wide occurrence, severe harm, strong virulence in soybean around the world, so it is an effective way to breed resistant soybean varieties to whitefly. The objective of this study was to establish an identification system of whitefly on soybean using 419 foreign and Chinese soybean germplasm in Jinan and Guanxian in 2004 and 2007. The relationship between different resistance indices was comprehensively analyzed. The results showed that the resistances to whitefly determined by the mean of whitefly nympha per leaflet (MWPL) was significantly different at different locations and in different years, but relatively consistent for the most varieties. Four varieties with high resistance including Huapidou, Dongxuan 1, Hedou 12 and Henghe, and four varieties with high susceptibility consisting Qihuang 26, Ludou 10, Ludou 12 and Qihuang 28 were screened as the standard varieties. The resistant criterion was made as follows: when MWPL <(a+d), the resistance of soybean variety was high resistant; ≥(a+d)~<(a+3d) was resistant; ≥(a+3d)~<(a+5d)was medium; ≥(a+5d)~ <(a+7d)was susceptible; and ≥(a+7d)was high susceptible. Meanwhile the results revealed that top leaves were suitable for the resistance identification of determinate soybean varieties, and middle leaves for that of semi-determinate and in-determinate soybean varieties.

Key words: Soybean[Glycine max(L.) Merr.], Whitefly{Bemisia tabaci Genn.), Resistance, Identification method, Criterion

[1] Wang L-Z(王连铮), Fu Y-Q(傅玉清), Zhao R-J(赵荣娟), Wang L(王岚), Pei Y-L(裴颜龙), Li Q(李强). Study on soybean breeding in Huanghuaihai region. Soybean Sci (大豆科学), 2001, 20(4): 166–269(in Chinese with English abstract)
[2] Xu R(徐冉), Zhang L-F(张礼凤), Wang C-J(王彩洁), Wang J-L(王金龙). Screening of soybean germplasm resistant to whitefly and the resistant mechanism. J Plant Genet Resour (植物遗传资源学报), 2005, 6(1): 56–62(in Chinese with English abstract)
[3] Chen Q-E(陈庆恩), Bai J-K(白金铠). An Illustrated Handbook of Soybean Diseases and Insect Pests in China (中国大豆病虫图志). Changchun: Jilin Science and Technology Press, 1987. pp 194–195 (in Chinese)
[4] Liu S S, De Barro P J, Xu J, Luan J B. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. ScienceXpress, 2007, 10: 1126–1131
[5] Wu K-M(吴孔明), Xu G(徐广), Guo Y-Y(郭予元). Seasonal population dynamics of tobacco whitefly adult on cotton in northern China. Plant Protect (植物保护), 2001, 27(2): 14–15(in Chinese with English abstract)
[6] Lin K-J(林克剑), Wu K-M(吴孔明), Wei H-Y(魏洪义). Population dynamics of Bemisia tobaci on different host plants and its chemical control. Entomol Knowl (昆虫知识), 2002, 39(4): 284–288(in Chinese with English abstract)
[7] Xu W-H(徐维红), Zhu G-R(朱国仁), Zhang Y-J(张友军). An analysis of the life table parameters of Bemisia tabaci feeding on seven species of host plants. Entomol Knowl (昆虫知识), 2003, 40(5): 453–455(in Chinese with English abstract)
[8] Sun S-Y(孙双艳), Hu D-X(胡敦孝). Determination of the toxicity and efficacy of several insecticides to B-type Bemisia tabaci. Plant Protect (植物保护), 2001, 27(4): 23–25(in Chinese with English abstract)
[9] Cui X-H(崔旭红), Xie M(谢明), Wan F-H(万方浩). Effects of brief exposure to high temperature on survival and fecundity of two whitefly species: Bemisia tabaci B-biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Sci Agric Sin (中国农业科学), 2008, 41(2): 424–430(in Chinese with English abstract)
[10] Zhang Z-L(张芝利), Luo C(罗晨). Occurrence and control countermeasures of Bemisia tabaci (Gennadius) in China. Plant Protect (植物保护), 2001, 27(2): 25–30(in Chinese with English abstract)
[11] Palumbo C, Toscano N C, Yashida H A. Impact of Bemisic whiteflies (Homoptera: Aleyrodidae) on alfalfa growth, forage yield, and quality. J Econ Entomol, 2000, 93: 1688–1694
[12] Hong Y, Wang X, Tian B. Chinese Squash leaf curl virus: A new whitefly-transmitted geminivirus. Sci China B, 1995, 38: 178–186
[13] Yin Q, Yang H, Gong Q. Tomato yellow leaf curl China virus: Monopartite genome organization and agroinfection of plants. Virus Res, 2001, 81: 69–76
[14] Huang J, Polaszek A. A revision of the Chinese species of Encarsia Forster: parasitoids of whiteflies, scales and aphids. J Nat Hist, 1998, 32: 1825–1966
[15] Pan J-J(潘家驹). Crops Breeding(作物育种学总论). Beijing: China Agriculture Press, 1994. pp 115–17(in Chinese)
[16] Gai J-Y(盖钧镒), Cui Z-L(崔章林). A study on methods and criteria of identification of resistance to leaf-feeding insect in soybean breeding. Acta Agron Sin (作物学报), 1997, 23(4): 400–407(in Chinese with English abstract)
[17] Cui Z-L(崔章林), Gai J-Y(盖钧镒), Ji D-F(吉东风), Ren Z-J(任珍静). A study on leaf-feeding insect species on soybeans in Nanjing area. Soybean Sci (大豆科学), 1997, 16(1): 12–20(in Chinese with English abstract)
[18] Sun Z-D(孙祖东), Yang S-Z(杨守臻), Chen H-Z(陈怀珠), Li C-Y(李初英), Long L-P(龙丽萍). Identification of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) and oviposition preference of L. indicata on soybean varieties. Chin J Oil Crop Sci (中国油料作物学报), 2005, 27(4): 69–71(in Chinese with English abstract)
[19] Hilla C B, Li Y, Hartman G L. Resistance to the soybean aphid in soybean germplasm. Crop Sci, 2004, 44: 98–106
[20] Mensah C, DiFonzo C, Nelson R L, Wang D C. Resistance to soybean aphid in early maturing soybean germplasm. Crop Sci, 2005, 45: 2228–2234
[21] Xing G-N(邢光南), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Evaluation of soybean germplasm in resistance to globular stink bug
[Megacopta cribraria (Fabricius)]. Acta Agron Sin(作物学报), 2006, 32(4): 491–496 (in Chinese with English abstract)
[22] Wang K-Q(王克勤), Li X-M(李新民), Liu C-L(刘春来), Liu X-L(刘兴龙). Pod borer
[Leguminivora glycinivorella (Mate)] resistance to soybean cultivars in Heilongjiang. Soybean Sci (大豆科学), 2006, 25(2): 153–157(in Chinese with English abstract)
[23] Cui Z-L(崔章林), Gai J-Y(盖钧镒). Advancement in the study on resistance to agromyzid fly (Melanaqromyza sojae Zehnter) of soybean. J Chin Oil Crops (中国油料), 1996, 18(3): 79–81(in Chinese with English abstract)
[24] Chang H S, Talekar N S. Identification of sources of resistance to the beanfly and two other agromyzid flies in soybean and mungbean. J Econ Entomol, 1980, 73: 197–199
[25] Gai J-Y(盖钧镒), Xia J-K(夏基康), Cui Z-L(崔章林), Ren Z-J(任珍静), Pu F-H(浦奉华), Ji D-F(吉东风). A study on resistance of soybeans from southern China to soybean agromyzid fly (Melanaqromyza sojae Zehnter). Soybean Sci (大豆科学), 1989, 8(2): 115–121(in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[14] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[15] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!