欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 821-830.doi: 10.3724/SP.J.1006.2009.00821

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆产量和产量构成因子及倒伏性的QTL分析

周 蓉1,2,陈海峰2,王贤智2,张晓娟2,单志慧2,吴学军2,蔡淑平2,邱德珍2,周新安2,*,吴江生1   

  1. 1华中农业大学植物科学技术学院,湖北武汉430070;2中国农业科学院油料作物研究所,湖北武汉430062
  • 收稿日期:2008-08-28 修回日期:2009-02-17 出版日期:2009-05-12 网络出版日期:2009-03-23
  • 基金资助:

    本研究由国家自然科学基金项目(30871554和30671313),国家高技术研究发展计划(863计划)项目(2006AA1000104),国家“十一五”科技支撑计划项目(2006BAD01A04-3)资助。

QTL Analysis of Yield,Yield Components and Lodging in Soybean

ZHOU Rong12,CHEN Hai-Feng2,WANG Xian-Zhi2,ZHANG Xiao-JUan2,SHAN Zhi-Hui2,WU Xue-Jun2,CAI Shu-Ping2,QIU De-Zhen2,ZHOUXin-An2*,WU Jiang-Sheng1   

  1. 1College of Plant Science and Technology,Huazhong Agricultural University,Wuhan430070,China;2Oil Crops Research Institute of Chinese Academy of Agricultural Sciences,Wuhan 430062,China
  • Received:2008-08-28 Revised:2009-02-17 Published:2009-05-12 Published online:2009-03-23

摘要:

随机选取中豆29×中豆32重组自交系群体中165个家系作为2年田间试验材料,分析大豆单株产量、产量构成因子及倒伏性等性状的相关性和遗传效应,并检测各性状QTL。结果表明,38个与产量、产量构成因子及倒伏性状等有关的QTL,主要集中在C2FI连锁群。表型相关分析结果与QTL定位结果一致。在F连锁群上,2年均检测到倒伏QTL qLD-15-1,解释的表型变异超过20%,与百粒重和分枝荚数QTL分别位于相同和相邻标记区间,表明产量相关性状与倒伏性存在一定的关联。在I连锁群上,每荚粒数QTL和二、三、四粒荚数QTL不仅于同一位置,解释的表型变异为32%~65%,并且2个年份均重复出现,每荚粒数和四粒荚数QTL与二、三粒荚数QTL的增效基因分别来自不同的亲本。这4个粒荚性状QTL的共位性与表型相关分析结果一致,证实每荚粒数和四粒荚数与二、三粒荚数分别由不同的机制调控,对于育种上探讨以改良大豆粒荚性状为途径提高大豆产量,提供了重要依据。

关键词: 大豆, 产量, 产量构成因子, 粒荚性状, 倒伏, QTL定位

Abstract:

High-yield and stable-yield is the main goal of soybean breeding, but yield is a complex quantitative trait, which is very vulnerable to the environment. A total of 165 plants of recombinant inbred lines (RILs) derived from a cross between Zhongdou 29 and Zhongdou 32 were used to analyze the relationship of individual yield, yield components, lodging and the genetic effect, and to map the QTLs in two years. Thirty-eight QTLs for yield, seed and pod traits, and lodging related traits were detected by composite interval mapping (CIM) method, the majority of which were located on C2, F and I linkage groups. The QTL (qLD-15-1) for lodging on F linkage group was detected in both years, explaining over 20% of phenotypic variation, with the same or adjacent marker intervals to the QTLs for 100-seed weight and pods on branch, showing some correlation between yield related traits and lodging. On I linkage group, the QTLs for yield components of seeds per pod, two-seed-pods, three-seed-pods, and four-seed-pods were detected on the same position in two years, explaining 32–65% of phenotypic variation. The positive alleles of QTLs for seeds per pod, four-seed-pods, two-seed-pods and three-seed-pods were from different parents. The four QTLs for seed and pod traits mapped on the same position, which was consistent with the correlation analysis result of phenotypic traits, showing that the regulatory mechanisms of the four traits for seed and pod were different, which may provide an important basis for promotion of soybean yield by improving seed and pod traits.

Key words: Soybean, Yield, Yield components, Seed and pod traits, Lodging, QTL analysis


[1] Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336

[2] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651

[3] Hnetkovsky H, Chang S J C, Doubler T W, Gibson P T, Lightfoot D A. Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS). Crop Sci, 1996, 36: 393–400

[4] Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509

[5] Yuan J, Njiti V N, Meksem K, Iqbal M J, Triwitayakorn K, Kassem My A, Davis G T, Schmidt M E, Lightfoot D A. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci, 2001, 42: 271–277

[6] Wu X-L(吴晓雷), Wang Y-J(王永军), He C-Y(贺超英), Chen S-Y(陈受宜), Gai J-Y(盖钧镒), Wang X-C(王学臣). QTL mapping of some agronomic traits of soybean. Acta Genet Sin (遗传学报), 2001, 28(10): 947–955 (in Chinese with English abstract)

[7] Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053–1067

[8] Concibido V C, Vallee B La, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet, 2003, 106: 575–582

[9] Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131–1139

[10] Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44: 784–791

[11] Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004, 108: 458–467

[12] Yang Z(杨喆), Gang R-X(关荣霞), Wang Y-J(王跃进), Liu Z-X(刘章雄), Chang R-Z(常汝镇), Wang S-M(王曙明), Qiu L-J(邱丽娟). Construction of genetic map and QTL analysis for some agronomic traits in soybean. J Plant Genet Resour (植物遗传资源学报), 2004, 5(4): 309–314 (in Chinese with English abstract)

[13] Brucher E, Niblack T, Kopisch-Obuch F J, Diers B W. The effect of rhg1 on reproduction of Heterodera glycines in the field and greenhouse and associated effects on agronomic traits. Crop Sci, 2005, 45: 1721–1727

[14] Kabelka E A, Carlson S R, Diers B W. Glycine soja PI 468916 SCN resistance loci’s associated effects on soybean seed yield and other agronomic traits. Crop Sci, 2006, 46: 622–629

[15] Guzman P S, Diers B W, Neece D J, Martin S K St, LeRoy A R, Grau C R, Hughes T J, Nelson R L. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 2007, 47: 111–122

[16] Maughan P J, Saghai Maroof M A, Buss G R. Molecular-marker analysis of seed-weight: Genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet, 1996, 93: 574–579

[17] Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theor Appl Genet, 2001, 103: 702–709

[18] Csanadi G, Vollmann J, Stift G, Lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet, 2001, 103: 912–919

[19] Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129: 387–393

[20] Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Cianzio S R. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43: 68–74

[21] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552–561

[22] Cui Z-L(崔章林), Gai J-Y(盖钧镒), Carter T E Jr, Qiu J-X(邱家驯), Zhao T-J(赵团结). The Released Chinese Soybean Cultivars and Their Pedigree Analysis (1923—1995) (中国大豆育成品种及其系谱分析). Beijing: China Agriculture Press, 1998 (in Chinese)

[23] Qiu L-J(邱丽娟), Chang R-Z(常汝镇). Descriptors and Data Standard for Soybean (Glycine spp.) (大豆种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006 (in Chinese)

[24] Gai J-Y(盖钧镒). Experimentation Methods(试验统计方法), 3rd edn. Beijing: China Agriculture Press, 2000. pp 248–252 (in Chinese)

[25] Ma Y-H(马育华). Foundation of Statistical Genetics and Plant Breeding (植物育种的数量遗传学基础). Jiangsu: Jiangsu Sci & Tech Press, 1984. pp 442–445 (in Chinese)

[26] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128

[27] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13

[28] Zhou X-A(周新安), Wang X-Z(王贤智), Cai S-P(蔡淑平), Wu X-J(吴学军), Sha A-H(沙爱华), Qiu D-Z(邱德珍), Zhang X-J(张晓娟). Relation of three-seed and four-seed pods with yield of RIL in soybeans. Chin J Oil Crop Sci (中国油料作物学报), 2005, 27(4): 22–25 (in Chinese with English abstract)

[29] Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J K(王健康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Sci Press, 2003. pp 341–350 (in Chinese)

[30] Zhou R(周蓉), Wang X-Z(王贤智), Chen H-F(陈海峰), Zhang X-J(张晓娟), Chan Z-H(单志慧), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安), Wu J S(吴江生). QTL analysis of lodging and related traits in soybean. Acta Agron Sin (作物学报), 2009, 35(1): 57–65 (in Chinese with English abstract)

[31] Wang X-Z(王贤智), Zhang X-J(张晓娟), Zhou R(周蓉), Sha A-H(沙爱华), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安). QTL analysis of seed and pod traits in soybean RIL population. Acta Agron Sin (作物学报), 2007, 33(3): 441–448 (in Chinese with English abstract)

[32] Tischner T, Allphin L, Chase K, Orf J H, Lark K G. Genetics of seed abortion and reproductive traits in soybean. Crop Sci, 2003, 43: 464–473
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!