欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1051-1058.doi: 10.3724/SP.J.1006.2009.01051

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小偃54和京411及其杂交后代稳定优选株系光合特性的动态变化

程建峰12,马为民3, 陈根云1,胡美君14,沈允钢1*,李振声5,童依平5,李滨5,李宏伟5   

  1. 1中国科学院上海生命科学研究院植物生理生态研究所,上海200032;2江西农业大学农学院,江西南昌330045;3上海师范大学生命与环境科学学院,上海200234;4浙江大学园艺系,浙江杭州300029;5中国科学院遗传与发育生物学研究所,北京100101
  • 收稿日期:2009-01-05 修回日期:2009-03-17 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 沈允钢,E-mail:ygshen@sippe.ac.cn
  • 基金资助:

    本项目由国家重点基础研究发展计划(973计划)项目(2009CB118504),中国科学院知识创新工程重大项目(KSCX2-YW-N-059),上海市博士后基金(07R214153)资助.

Dynamic Changes of Photosynthetic Characteristics in Xiaoyan 54,Jing 411 and the Stable Selected Superior Strains of Their Hybrid Progenies

CHENG Jian-Feng12,MA Wei-Min3,CHEN Gen-Yun1,HU Mei-Jun14,SHEN Yun-Gang1*,LI Zhen-Sheng5,Tong Yi-Ping5,LI Bin5,LI Hong-Wei5.   

  1. 1Institute of Plant Physiology & Ecology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Shanghai 200032,China;2College of Agronomy, Jiangxi Agricultural University,Nanchang 330045,China;3College of Life and Environment Sciences, Shanghai Normal University Shanghai 200234,China;4Department of Horiculture, Zhejiang University,Hangzhou 310029,China;5Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China
  • Received:2009-01-05 Revised:2009-03-17 Published:2009-06-12 Published online:2009-04-16
  • Contact: SHEN Yun-Gang,E-mail:ygshen@sippe.ac.cn

摘要:

以上海种植的小偃54和京411及其杂交后代稳定优选株系6号、7号和10号为材料,通过测定抽穗期剑叶的毫秒延迟发光(ms-DLE)和不同生育期倒数第1片功能叶的光合速率(Pn)、叶绿素含量(Chl)、比叶重(SLW)、Fv/Fm、ATP含量和P700还原初始速率来分析其光合特性的动态变化,为小麦育种选择中改善光合性能提供理论依据和技术途径。结果表明,小麦杂交优选后代6号株系的形态农艺性状近于小偃54,7号株系近于京411,10号株系的变异较大。不同基因型小麦及其杂交优选后代的光合特性与生育时期和衡量指标密切相关,Pn为分蘖期>抽穗期>灌浆期>拔节期,叶绿素含量为灌浆期>抽穗期>分蘖期>拔节期,ATP含量为灌浆期>拔节期>分蘖期>抽穗期,P700还原初始速率为灌浆期>抽穗期>拔节期>分蘖期,各生育期间的Fv/Fm无明显差异。小麦光合特性的超亲优势随生育时期而异,杂交优选后代10号株系的Pn和Chl在灌浆期有超亲优势,ATP含量在抽穗期有超亲优势,SLW和P700还原初始速率介于两亲本间。杂交优选后代株系10号聚合了Pn、Chl和ATP含量的超亲优势,其光合特性优于两亲本,而6号劣于两亲本,7号介于两亲本之间。

关键词: 小麦, 杂交后代, 光合作用, 光合磷酸化, 高光效育种

Abstract:

Xiaoyan 54, derived from the cross between Triticum aestivum L. and Thinopyrum ponticum, has special features of inherent higher cyclic photophosphorylation activity during photosynthesis and its higher tolerance to stresses. Many hybrid progenies of Xiaoyan 54 and Jing 411 were produced in the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, including several lines with stable characters. To explore their photosynthetic properties and provide theoretical basis or technical approaches for wheat breeding selection, the parents (Xiaoyan 54 and Jing 411) and the stable single-seed descent lines 6, 7, and 10 were planted in Shanghai in 2006–2008 growing seasons. Millisecond delayed light emission (ms-DLE) of their flag leaves during the heading stage was determined in 2007. The morpho-agronomic and yield traits of them were investigated in 2008. Net photosynthetic rate (Pn),chlorophyll content (Chl), specific leaf weight (SLW), Fv/Fm, ATP content, initial reduction rate of P700 in reciprocal first functional leaf of them during the different growth stages were determined for analyzing dynamic changes of photosynthetic characteristics in 2008. The morpho-agronomic traits of the line 6 and 7 were similar to Xiaoyan 54 and Jing 411, respectively, and varied markedly in line 10. Photosynthetic characteristics of the parents and stable single-seed descent lines were closely related to the growth stages and measured indexes. Pn decreased in the order of tillering stage > heading stage > grain filling stage > jointing stage; Chl content was different with grain filling stage ranking the first, followed by heading stage, tilleringstage and jointing stage; ATP content was the order of grain filling stage > jointing stage > tillering stage > heading stage; initial reduction rate of P700 was at grain filling stage > heading stage > jointing stage > tillering stage; Fv/Fm at various growth stages were similar without significant differences. The heterobeltiosis of photosynthetic characteristics in wheat changed with different growth stages, such as the heterobeltiosis of Pn or Chl in line 10 was at grain-filling stage, heterobeltiosis of ATP content was at heading stage, SLW and initial reduction rate of P700 in each growth stage were the medium between the parents. Photosynthesis capacity was superior in line 10 than in the parents because of the heterobeltioses on Pn and contents of Chl and ATP. In lines 6 and 7, the photosynthesis capacity was inferior to and between the parents, respectively.

Key words: Wheat(Triticum aestivum L.), Hybrid progeny, Photosynthesis, High photosynthetic efficiency breeding, Photoposphorylation


[1] Xu D-Q(许大全). Photosynthetic Efficiency (光合作用效率). Shanghai: Shanghai Scientific and Technical Publishers, 2002. pp 171-175 (in Chinese)


[2] Jiao D M, Li X, Huang X Q, Chi W, Kuang T Y, Ku M S B. Characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in PEPC transgenic rice plants. Chin Sci Bull,2001, 46: 413-418


[3] Ji B H, Tan H H, Zhou R, Jiao D M, Shen Y G. Promotive effect of low concentrations of NaHSO3 on photophosphorylation and photosynthesis in phosphoenolpyruVate carboxylase transgenic rice leaves. J Integr Plant Biol, 2005, 47: 178-186


[4] Hao N B, Du W G. Ge Q Y, Zhang G R. Li W-H, Man W Q, Peng D Q, Bai K Z, Kuang T Y. Progress in the breeding of soybean for nigh photosynthetic efficiency. Acta Bot Sin, 2002, 44: 253-258


[5] Zhang Z-B(张正斌). Photosynthesis evolution of wheat. World Agric (世界农业), 1997, (11): 18-21(in Chinese)


[6] Hu Y-J(胡延吉), Zhao T-F(赵檀方). The inheritance and improvement potential of photosynthesis in common wheat. Sci Agric Sin (中国农业科学), 1995, 28(1): 14-21 (in Chinese with English abstract)


[7] Jiang H(江华), Wang H-W(王宏炜), Su J-H(苏吉虎), Shi X-B(石晓冰), Shen Y-G(沈允钢), Li Z-S(李振声), Wei Q-K(魏其克), Zhang X-M(张锡梅), Li B(李滨), Li M(李鸣), Zhang J-J(张吉军). Photosynthesis in offspring of hybridization between two wheat cultivars. Acta Agron Sin (作物学报), 2002, 28(4): 451-454 (in Chinese with English abstract)


[8] Wang H W, Su J H, Shen Y G. Difference in response of photosynthesis to bisulfite between two wheat genotypes. J Plant Physiol Mol Biol, 2003, 29: 27-32


[9] Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Zhang A M, Li Z S, Kuang T Y, Lu C M. Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci,2006, 171: 389-397


[10] Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J Y, Mi H L. Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol, 2006, 141: 465-474


[11] Wang P, Ye J Y, Shen Y G, Mi H L. The role of chloroplastic NAD(P)H dehydrogenase in protection of tobacco plant against heat stress. Chin Sci (Ser C), 2006, 49: 311-321


[12] Hu M-J(胡美君), Wang Y-Q(王义芹), Zhang L(张亮), Wang C(王超), Shen Y-G(沈允钢), Li Z-S(李振声), Li H-W(李宏伟), Tong Y-P(童依平), Li B(李滨). Photosynthetic characteristics of different wheat cultivars and their offspring of hybridization. Acta Agron Sin (作物学报), 2007, 33(11): 1879-1883(in Chinese with English abstract)


[13] Xu C-H(徐春和), Shen Y-G(沈允钢). The relationship between fast phase of the millisecond belayed light emission and proton release during water oxidation. Chin Sci (Ser B) (中国科学·B辑), 1983, 13(9): 802-808 (in Chinese)


[14] Shanghai Institute of Plant Physiology, Chinese Academy of Sciences (中国科学院上海植物生理研究所), Shanghai Society of Plant Physiology (上海市植物生理学会). Modern Laboratory Manual for Plant Physiology (现代植物生理学实验指南). Beijing: Science Press, 1999. pp 87-89, 95-98, 111-112 (in Chinese)


[15] Diao C-Q(刁操铨). Crop Cultivation (South edition) (作物栽培学各论-南方本). Beijing: China Agriculture Press, 1998. pp 1-60 (in Chinese)


[16] Moss D N, Musgrave R B. Photosynthesis and crop production. Adv Agron, 1971, 23: 317-336


[17] Mae T. Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis and yield potential. Plant Soil, 1997, 196: 201-210


[18] Meziane D, Shipley B. Direct and indirect relationships between specific leaf mass, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Ann Bot, 2001, 88: 915-927

[19] Lin X-Q(林贤青), Zhu D-F(朱德峰), Zhou W-J(周伟军), Zhang Y-P(张玉屏). Relationship between specific leaf weight and photosynthetic rate at panicle initiation stage in super hybrid rice. Chin J Rice Sci (中国水稻科学), 2003, 17(3): 281-283(in Chinese with English abstract)

[20] Johnson G N. Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot, 2005, 56: 407-416

[21] Maxwell K, Johnson G N. Chlorophyll fluorescence: A practical guide. J Exp Bot, 2000, 51: 659-668

[22] Kindred D R, Gooding M J. Heterosis for yield and its physiological determinants in wheat. Euphytica, 2005, 142: 149-159
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!