欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1086-1096.doi: 10.3724/SP.J.1006.2009.01086

• 耕作栽培·生理生化 • 上一篇    下一篇

公顷产10000kg小麦氮素和干物质积累与分配特性

张法全1,王小燕12,于振文1*,王西芝3,白洪立3   

  1. 1山东农业大学农业部作物生理生态与栽培重点开放实验室,山东泰安271018;2长江大学农学院,山东荆州434100;3兖州市农业科学研究所,山东兖州265701
  • 收稿日期:2008-07-07 修回日期:2009-03-22 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 于振文,E-mail:yuzw@sdau.edu.cn;Tel:0538-8241484
  • 基金资助:

    本研究由国家自然科学基金(30871478),农业部现代小麦生产技术体系项目(nycytx-03)资助。

Characteristics of Accumulation and Distribution of Nitrogen and Dry Matter in Wheat at Yield Level of Ten Thousand Kilograms per hectare

ZHANG Fa-Quan1,WANG Xiao-Yan12,YU Zhen-Wen1*,WANG Xi-Zhi3,BAI Hong-Li3   

  1. 1Key Laboratory of Crop Ecophysiology and Cultivation,Ministry of Agriculture,Shandong Agricultural University,Tai'an 271018,China;2College of Agriculture, Yangtze University,Jingzhou 434100,China;3Institute of Agricultural Sciences of Yanzhou City, Yanzhou 272000,China
  • Received:2008-07-07 Revised:2009-03-22 Published:2009-06-12 Published online:2009-04-16
  • Contact: YU Zhen-Wen,E-mail:yuzw@sdau.edu.cn;Tel:0538-8241484

摘要:

以泰山23和济麦22为试验品种,通过连续2年的田间试验,对单产高达10 000 kg hm-2的小麦进行了施氮量和氮素吸收转运和分配特性的研究。在20062007年生长季,随着施氮量的增加,小麦籽粒产量先增加后降低,施纯氮240 kg hm-2 (N240)270 kg hm-2(N270)处理的产量分别达9 954.73 kg hm-210 647.02 kg hm-2,比不施氮肥处理(N0)分别增加11.20%18.93%。与N0处理相比,施氮处理显著增加了小麦植株氮素积累量、籽粒氮素积累量和开花后营养器官氮素向籽粒的转运量;随着施氮量的增加,成熟期小麦植株氮素积累量呈先增后降趋势,以N270处理最高;开花后营养器官氮素向小麦籽粒转运量和转运率先升后降,转运量以N270处理最大,为213.78 kg hm-2;而转运率以N240处理最高,为67.98%。随施氮量的增加,小麦成熟期各器官干物质积累量、花后营养器官干物质再分配量和再分配率先增后降,均以N270处理最高;开花后干物质积累对籽粒的贡献率亦呈先增后降的趋势,以N240处理最高20052006年的试验结果呈相同变化趋势。在本试验条件下,小麦产量水平达10 000 kg hm-2时的适宜施氮量为240~270 kg hm-2,可供生产中参考。

关键词: 施氮量, 小麦, 产量, 氮素积累与分配

Abstract:

Application of nitrogen (N) fertilizer is one of the most important cultivated measures to increase wheat (Triticum aestivum L.) yield in production. However, abuse of N fertilizer will not only reduce grain yield and economic profit but also cause environmental problems. The proper amount of N fertilizer applied in high-yielding production of winter wheat has been studied at the yield level of 9000 kg ha-1. The objective of this study was to determine the effects of several N fertilizer rates on uptake, distribution, and translocation of nitrogen as well as grain yield, therefore, to suggest a reasonable application rate of N fertilizer in wheat production. Three rates of N fertilizer application (0, 180, and 240 kg ha-1) without manure before sowing were designed in Experiment I in 2005–2006, only one treatment of N fertilizer (260 kg ha-1) with 3 750 kg ha-1 manure before sowing in Experiment II in 2005–2006, and six N fertilizer rates (0, 210, 240, 270, 300, and 330 kg ha-1) with 3 750 kg ha-1 manure in 2006–2007. Two wheat cultivars with medium protein content, Taishan 23 and Jimai 22, were used in the three experiments, i.e., Taishan 23 in Experiment I, Jimai 22 in the other two experiments. The results showed that the application of manure before sowing had minor effect in this study, and three experiments showed similar changing trends in N accumulation and translocation among various organs and growth stages as well as the grain yield. Take the example of Experiment III, with more input of N fertilizer, the grain yield first increased and later decreased during growth period compared with the control (no N fertilizer treatment), and the grain yields of N240 (240 kg ha-1) and N270 (270 kg ha-1) treatments were 9 954.73 and 10 647.02 kg ha-1, respectively, by the increase percentages of 11.20% and 18.93%. Compared with the control, the nitrogen accumulation amount in plant and grain and the nitrogen translocation amount (nitrogen accumulation in vegetative organs at anthesis stage minus the nitrogen accumulation in vegetative organs at maturity, NTA) from vegetative organs to grains after anthesis significantly increased in treatments with N fertilizer application. With the increase of N fertilizer rate, the nitrogen accumulation amount in wheat plant showed a changing trend of first up and then down. The N270 treatment had the highest nitrogen accumulation amount at maturity. The NTA and nitrogen translocation efficiency (NTA/ nitrogen accumulation in vegetative organs at anthesis stage, TE) from vegetative organs to grain after anthesis also increased at first and then decreased. The N270 treatment had the highest nitrogen translocation amount, which was 213.78 kg ha-1. The N 240 treatment had the highest TE of 67.98%. Similarly, the dry matter accumulation amount in various vegetative organs of wheat at maturity, the dry matter redistribution amount from vegetative organs to grain after anthesis, and the dry matter redistribution efficiency after anthesis were all largest in N270 treatment. Among the six N fertilizer treatments, the contribution of dry matter accumulation amount from vegetative organs to grains after anthesis was the largest in N240 treatment. The results of this study suggested that N fertilizer supplied at 240–270 kg ha-1 is optimal in wheat production under similar conditions to those of the experiments to obtain the high-yielding level of 10 000 kg ha-1.

Key words: Nitrogen fertilizer rate, Wheat, Yield, Nitrogen accumulation and distribution

[1] Hou Y-L(侯有良), O’Brien L, Zhong G-R(钟改荣). Study on the dynamic changes of the distribution and accumulation of nitrogen in different plant parts of wheat. Acta Agron Sin (作物学报), 2001, 27(4): 493-499(in English with Chinese abstract)

[2] Lu Z-G(陆增根), Dai T-B(戴廷波), Jiang D(姜东), Ji Q(荆奇), Wu Z-G(吴正贵), Zhou P-N(周培南), Cao W-X(曹卫星). Effects of nitrogen strategies on population quality index and grain yield & quality in weak-gluten wheat. Acta Agron Sin (作物学报), 2007, 33(4): 590-597 (in Chinese with English abstract)

[3] Zhao M-X(赵满兴), Zhou J-B(周建斌), Yang R(杨绒), Zheng X-F(郑险峰), Zhai B-N(翟丙年), Li S-X(李生秀). Characteristics of nitrogen accumulation, distribution and translocation in winter wheat on dryland. Plant Nutr Fertr Sci (植物营养与肥料学报), 2006, 12(2):143-149 (in Chinese with English abstract)

[4] Wang Z J, Wang J H, Huang W J, Ma Z H, Zhao M. Study on nitrogen distribution in leaf, stem and sheath at different layers in winter wheat canopy and their influence on grain quality. Agric Sci China, 2003, 2: 859-866

[5] Slaton N A, Mozaffari M, DeLong R E, Norman R J, Ross W J. Influence of nitrogen fertilizer application rate and time on winter wheat yields. Arkansas Agric Exp Sta Res Ser, 2005, 525: 95-99

[6] Ma B L, Yan W, Dwyer L M, Frgeau-Reid J, Voldeng H D, Dion Y, Nass H. Graphic analysis of genotype, environment, nitrogen fertilizer, and their interactions on spring wheat yield. Agron J, 2004, 96: 169-180

[7] Peng Y-X(彭永欣), Jiang X-Z(姜雪忠), Guo W-S(郭文善), Yan L-L(严六零), Feng C-N(封超年), Liang X-W(梁雄伟), Liu B-Y(刘宝玉). Regulation of nitrogen on grain yield and quality. In: Cultivation Techniques and Physiology of Wheat (小麦栽培与生理). Nanjing: Northeast University Press, 1992. pp 127-144(in Chinese with English abstract)

[8] Cao C-F(曹承富), Kong L-C(孔令聪), Wang J-L(汪建来), Zhao B(赵斌). Effects of nitrogen on yield, quality and nutritive absorption of middle and strong gluten wheat. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(1): 46-50(in Chinese with English abstract)

[9] Tong Y-A(同延安), Zhao Y(赵营), Zhao H-B(赵护兵), Fan H-Z(樊红柱). Effect of N rates on N uptake, transformation and the yield of winter wheat. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(1): 64-69(in Chinese with English abstract)

[10] Zhao G-C(赵广才), Chang X-H(常旭虹), Liu L-H(刘利华), Yang Y-S(杨玉双), Chi Z-Z(池忠志), Yang L-Z(杨丽珍), Li Z-H(李振华). Effect of nitrogen application on grain yield and processing quality in different strong gluten wheats. Acta Agron Sin (作物学报), 2006, (5): 723-727 (in Chinese with English abstract)

[11] Souza E J, Martin J M, Guttieri M J, O’Brien K M, Habernicht D K, Lanning S P, McLean R, Carlson G R, Talbert L E. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci, 2004, 44: 425-432

[12] Abad A, Lloveras J, Michelena A.Nitrogen fertilization and foliarurea effects on durum wheat yield and quality and on residual soil nitratein irrigated Mediterranean conditions. Field Crops Res, 2004, 87: 257-269

[13] Wang H, McCaig T N, DePauw R M, Clarke F R, Clarke J M. Physiological characteristics of recent Canada Western Red Spring wheat cultivars: components of grain nitrogen yield. Can J Plant Sci, 2003, 83: 699-707

[14] Zhao J-Y(赵俊晔), Yu Z-W(于振文). Effects of nitrogen fertilizer rate on uptake, distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition. Acta Agron Sin (作物学报), 2006, 32(4):484-490 (in Chinese with English abstract)

[15] Stevens W B, Hoeft R G, Mulvaney R L. Fate of nitrogen-15 in a long-term nitrogen rate study: II. Nitrogen uptake efficiency. Agron J, 2005, 97: 1046-1053

[16] Timsina J, Singh U, Badaruddin M, Meisner C, Amin M R. Cultivar, nitrogen, and water effects on productivity, and nitrogen-use efficiency and balance for rice-wheat sequences of Bangladesh. Field Crops Res, 2001, 72:143-161

[17] Huo Z-Y(霍中洋), Ge X(葛鑫), Zhang H-C(张洪程), Dai Q-G(戴其根), Xu K(许轲), Gong Z-K(龚振恺). Effect of different nitrogen application types on N-absorption and N-utilization rate of specific use cultivars of wheat. Acta Agron Sin (作物学报), 2004, 30(5): 449-454(in Chinese with English abstract)

[18] He Z-F(何照范). Analysis Technique for Grain Quality of Cereals and Oils (粮油籽粒品质及其分析技术). Beijing: Agriculture Press, 1985. pp: 31-41, 57, 59(in Chinese)

[19] Lin Q(林琪), Hou L-B(侯立白), Han W(韩伟). Effects of nitrogen rates on grain yield and quality of wheat in different soil fertility.Plant Nutr Fert Sci (植物营养与肥料学报), 2004, 10(6): 561-567 (in Chinese with English abstract)

[20] Wang C-Y(王晨阳), Zhu Y-J(朱云集), Xia G-J (夏国军), Song J-Y(宋家永), Li J-J(李九星), Wang Y-H(王永华), Luo Y(罗毅). Effects application of nitrogen at the later stage on grain yield and plant physiological characteristics of super-high-yielding winter wheat. Acta Agron Sin (作物学报), 1998, 24(6): 978-983 (in Chinese with English abstract)

[21] Zhang H-C(张洪程), Xu K(许轲), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Dong M-H(董明辉). Preliminary study on the traits of nitrogen absorption and nitrogen fertilizer applying in super-high-yielding winter wheat. Acta Agron Sin (作物学报), 1998, 24(6): 935-940(in Chinese with English abstract)

[22] Han Y-L(韩燕来), Ge D-J(葛东杰), Wang Q(汪强), Wang Y-L(王宜伦), Tan J-F(谭金芳). Effect of N fertilizer rate on fate of labeled nitrogen and winter wheat yield on different soil fertility fields in Chao soil area in north Henan. J Soil Water Conserv (水土保持学报), 2007, 21(5): 151-154 (in Chinese with English abstract)

[23] Zhu X-K(朱新开), Guo W-S(郭文善), Zhou Z-Q(周正权), Feng C-N(封超年), Peng Y-X(彭永欣), Ling Q-H(凌启鸿). Effects of nitrogen fertilizer on n absorption, yield and quality of medium-gluten wheat Yangmai 10. Sci Agri Sin (中国农业科学), 2004, 37(12): 1831-1837 (in Chinese with English abstract)

[24] Wang Y-F(王月福), Yu Z-W(于振文), Li X-X(李尚霞), Yu S-L(余松烈). Effects of soil fertility and nitrogen application rate on nitrogen absorption and translocation, grain yield, and grain protein content of wheat. Chin J Appl Ecol (应用生态学报), 2003, 14(11):1868-1872 (in Chinese with English abstract)

[25] Yan S-H(阎素红), Cai Z-M(蔡忠民), Yang Z-S(杨兆生), Wang J-J(王俊娟), Zhao T-G(赵土岗). Effects of different fertility on yield and canopy biomass accumulation and distribution after anthesis of later sowing wheat. J Titiceae Crops (麦类作物学报), 2000, 20(3): 46-49 (in Chinese with English abstract)
Ma D-H(马东辉), Wang Y-F(王月福), Zhou H(周华), Sun H(孙虎). Effect of postanthesis soil water status and nitrogen on grain yield and canopy biomass accumulation and transportation of winter wheat. J Titiceae Crops (麦类作物学报),2007, 27(5): 847-851 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!