欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1253-1360.doi: 10.3724/SP.J.1006.2009.01253

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

叶绿体型转昆虫抗冻蛋白基因烟草的耐寒性

王艳,马纪*,黄薇,邱立明,叶锋,张富春   

  1. 新疆大学生命科学与技术学院/新疆生物资源基因工程重点实验室,新疆乌鲁木齐830046
  • 收稿日期:2008-09-05 修回日期:2009-02-18 出版日期:2009-07-12 网络出版日期:2009-05-19
  • 通讯作者: 马纪, E-mail: majiuci@xju.edu.cn; Tel: 0991-8583259
  • 作者简介:bluelovewy@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(30760056)和教育部2008“促进与美大地区科研合作与高层次人才培养项目”资助。

Codl Tolerance of Transplastomic Tobacco Lines Carrying Insect Antifreeze Protein

WANG Yan,MA Ji*,HUANG Wei,QIU Li-Ming,YE Feng,ZHANG Fu-Chun   

  1. Xinjiang Key Laboratory of Biological Resources and Genetic Engineering,College of Life Science and Technoogy,Xinjiang University,Urumqi 830046,China
  • Received:2008-09-05 Revised:2009-02-18 Published:2009-07-12 Published online:2009-05-19
  • Contact: MA Ji, E-mail: majiuci@xju.edu.cn; Tel: 0991-8583259
  • About author:bluelovewy@126.com

摘要:

根据已构建的大豆叶绿体表达载体pJY01,设计特异性引物,将昆虫抗冻蛋白基因MpAFP149插入此载体中构成叶绿体表达载体pJY01-MpAFP149,利用基因枪轰击法转化烟草,经壮观霉素筛选获得4株叶绿体型转抗冻蛋白基因烟草株系。PCRPCR-Southern结果显示外源基因已整合至烟草叶绿体基因组中但同质化水平不高,RT-PCR结果也表明昆虫抗冻蛋白基因已发生了转录。将野生型烟草、叶绿体型转抗冻蛋白基因烟草及核转化T1代转抗冻蛋白基因烟草(pCAMBIA1302- MpAFP149)1℃低温处理3 d,观察耐寒表型及测定相对电导率。结果表明, 叶绿体型转基因烟草的耐寒表型优于野生型烟草,但与核转化的T1代转抗冻蛋白基因烟草无显著差异。处理3 d时,叶绿体型转基因烟草和T1代转抗冻蛋白基因烟草的电导率分别为39.2%38.2%,而野生型烟草已达73.7%。本实验获得的异质化转叶绿体抗冻蛋白基因烟草与转核基因烟草的耐寒力无差异。

关键词: 抗冻蛋白基因MpAFP149, 叶绿体转化载体, 烟草, 耐寒性

Abstract:

The antifreeze protein gene MpAFP149 from desert insect Microdera punctipennis dzungarica was inserted into soybean chloroplast vector pJY01 to construct recombinant chloroplast vector pJY01-MpAFP149 by designing special primers. The plasmid was then transformed into tobacco by gene gun. Four transplastomic tobacco lines were obtained by spectinomycin screening. PCR and PCR-Southern analysis showed that the MpAFP149 gene was successfully integrated into the tobacco chloroplast genome, but the transgenicplants exhibited low homoplasmy. The result of RT-PCR also validated that MpAFP149 gene was transcribed at mRNA level. The antifreeze effect of transplastomic tobacco with insect antifreeze protein gene in its chloroplasts was evaluated by measuring the relative conductivity and comparing the phenotypes of different plants after cold treatment. Wild-type tobacco, transplastomic tobacco and T1 generation of transgenic tobacco containing pCAMBIA1302-MpAFP149 in its nuclei were subjected to –1℃ for different days (0, 1, 2, and 3 d). The results showed that transgenic plants with insect antifreeze protein gene in chloroplasts or in nuclei performed better phenotype after cold treatment at 1℃ for three days and recovering at room temperature for five days than wild-type tobacco. After three days, the electrolyte leakage reached 73.7% for wild-type tobacco, 39.2% for chloroplast transgenic plants and 38.2% for nuclei transformed T1 generation tobacco. There was no cold tolerance difference between nuclei transgenic tobacco and heterogeneous tansplastomic tobacco in our research.

Key words: Antifreeze protein gene MpAFP149, Chloroplast transformed vector, Tobacco, Cold tolerance


[1] Jack A, Hill P G, Dodd C E, Layboum-Parry J. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology, 2004, 50: 171-180

[2] Stefen P G, Brian D. Cold survival in freeze intolerant insects: the structure and function of beta-helical antifreeze proteins. Ear J Biochem, 2004, 271: 3285-3296

[3] Yang Z Y, Zhou Y X, Liu K, Cheng Y H, Liu R Z, Chen G J, Jia Z C. Computational study on the function of water within a B-helix antifreeze protein dimer and in the process of ice-protein binding. Biophy J, 2003, 85: 2599-2605

[4] Liou Y C, Thibauh P, Walker V K, Davies P L, Graham L A. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry, 1999, 38: 11415-11424

[5] Kenward K D, Brandle J, McPherson J, Davies P L. Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance. Transgen Res, 1999, 8: 105-117

[6] Huang Y-F(黄永芬), Wang Q-Y(汪清胤), Fu G-R(付桂荣), Zhao X-X(赵晓祥), Yang Z-X(杨志兴). The research on introducing flounder antifreeze protein gene (afp) into tomato. Chin Biochem J (生物化学杂志), 1997, 13(4): 418-422(in Chinese with English abstract)

[7] Georges F, Saleem M, Cutler A J. Design and cloning of a synthesis gene for the flounder antifreeze protein and its expression in plant cells. Gene, 1990, 91: 159-165

[8] Hightower R, Cathy B, Ranela D. Expression of antifreeze proteins in transgenic plants. Plant Mol Biol, 1991, 17: 1013-1021

[9] Doucet D, Tyshenko M G, Davies P L, Walker V K. A family of expressed antifreeze protein genes from the moth, Choristoneura fumiferana. Eur J Biochem, 2002, 269: 38-46

[10] Huang T, Nicodemus J, Zarka D G, Thomashow M F, Wisniewski M, Duman G. Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Mol Biol, 2002, 50: 333-342

[11] Wang Y(王艳), Qiu L-M(邱立明), Xie W-J(谢文娟), Huang W(黄薇), Ye F(叶锋), Zhang F-C(张富春), Ma J(马纪). Cold tolerance of transgenic tobacco carrying gene encoding insect antifreeze protein. Acta Agron Sin (作物学报), 2008, 34(3): 397-402(in Chinese with English abstract)

[12] Wang Y, Qiu L M, Dai C Y, Wang J, Luo J M, Zhang F C, Ma J. Expression of insect (Microdera punctipennis dzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco. Plant Cell Rep, 2008, 27: 1349-1358

[13] Daniell H, Khan M S, Alison L. Milestones in chloroplast genetic engineering: An environmentally friendly era in biotechnology. Trends Plant Sci, 2002, 7: 84-91

[14] Daniell H. Molecular strategies for gene containment in transgenic crops. Nat Biotechnol, 2002, 20: 581-586

[15] Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine, 2005, 23: 1779-1783

[16] Lee S B, Kwon H B, Kown S J, Park S C, Jeong M J, Han S E, Byun M O, Daniell H. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed, 2003, 11: 1-13

[17] Boynton J E, Gillham N W, Harris E H, Hosler J P, Johnson A M, Jones A R, Randolph-Anderson B L, Robertson D, Klein T M. Chloroplast transformation in chlamydomonas with high velocity microprojectiles. Science, 1988, 240: 1534-1538

[18] Lutz K A, Knapp J E, Maliga P. Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol, 2001, 125: 1585-1590

[19] Su N(苏宁), Yang B(杨波), Meng K(孟昆), Li Y-N(李佚女), Sun M(孙萌), Sun B-Y(孙丙耀), Shen G-F(沈桂芳). The research of Bt and OC Gene Cotransformation in tobacco chloroplast. Sci Agric Sin (中国农业科学), 2002, 35(4): 394-398(in Chinese with English abstract)

[20] DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol, 2001, 127: 852-862

[21] Watson J, Koya V, Leppla S H, Daniell H. Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine, 2004, 22: 4374-4384

[22] Kang T J, Loc N H, Jang M O, Jang Y S, Kim Y S, Seo J E, Yang M S. Expression of the B subunit of E. coli heat-labile enterotoxin in the chloroplasts of plants and its characterization. Transgen Res, 2003, 12: 683-691

[23] Erickson J M. Chloroplast Transformation: Current Results and Future Prospects. In: Donald R O, Charles F Y, eds. Oxygenic Photosynthesis, the Light Reaction. Dordrecht: Kluwer Academic Publishers, 1996. pp 589-619

[24] Bendich A J. Why the chloroplast and mitochondria contain so many copies of their genome. Bioessays, 1987, 6: 279-282

[25] Chen S(陈飒), Li J-Y(李金耀), Wu P(吴平), Sun H(孙寰), Zhao L-M(赵丽梅), Shou H-X(寿惠霞). Construction of soybean chloroplast transformation vector pJY series and its transformation in tobacco. J Agric Biotechnol (农业生物技术学报), 2007, 15(6): 899-904(in Chinese with English abstract)

[26] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. Beijing: Science Press, 1999. pp 478-481(in Chinese)

[27] Svab Z, Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA, 1993, 90: 913-917

[28] Michaels S D, John M C, Amasino R M. Removal of polysaccharides from plant DNA by ethanol precipitation. Biotechniques, 1994, 17: 247-276

[29] Zhao S-J(赵世杰), Shi G-A(史国安), Dong X-C(董新纯). Guidelines of Plant Physiological Experiment (植物生理学实验指导). Beijing: China Agricultural Scientech Press, 2002. pp 84-131(in Chinese)

[30] Bock R. Analysis of RNA editiong in plastids. Methods, 1998, 15: 75-83

[31] Kuroda H, Maliga P. Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucl Acids Res, 2001, 29: 970-975
[1] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[2] 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877.
[3] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[4] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[5] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[6] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[7] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[8] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
[9] 白冬梅,薛云云,赵姣姣,黄莉,田跃霞,权宝全,姜慧芳. 山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性[J]. 作物学报, 2018, 44(10): 1459-1467.
[10] 钟思荣,陈仁霄,陶瑶,龚丝雨,何宽信,张启明,张世川,刘齐元. 耐低氮烟草基因型的筛选及氮效率分析[J]. 作物学报, 2017, 43(07): 993-1002.
[11] 赵佩,腾丽杰,王轲,杜丽璞,任贤,佘茂云,叶兴国. 小麦TaVIP1家族基因克隆、分子特性及功能分析[J]. 作物学报, 2017, 43(02): 201-209.
[12] 姚新转,刘洋,赵德刚. 高粱Na+转运蛋白基因SbSKC1的克隆及其在烟草中的抗盐功能鉴定[J]. 作物学报, 2017, 43(02): 190-200.
[13] 陶瑶,王瑜,钟思荣,吴凌敏,谢丽娟,聂亚平,周玮,王建革,刘齐元. 烟草ATP合酶F0部分4个亚基基因转录本编辑位点分析[J]. 作物学报, 2016, 42(12): 1743-1753.
[14] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
[15] 贺晓岚,王建伟,李文旭,陈真真,赵继新,武军,王中华,陈新宏. 大赖草6-SFT基因的克隆及其转基因烟草抗旱和抗寒性分析[J]. 作物学报, 2016, 42(03): 389-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!