欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1313-1319.doi: 10.3724/SP.J.1006.2009.01313

• 耕作栽培·生理生化 • 上一篇    下一篇

低温驯化及封冻后不同抗寒性小麦品种的形态建成及生理基础分析

王晓楠1,付连双1,2,李卓夫1,*,孙艳丽1,王玉波1,刘灿1,王金伟1,陈禹兴1   

  1. 1东北农业大学农学院,黑龙江哈尔滨150030;2沈阳农业大学农学院,辽宁沈阳110161
  • 收稿日期:2008-12-01 修回日期:2009-03-20 出版日期:2009-07-12 网络出版日期:2009-05-19
  • 通讯作者: 李卓夫, E-mail: zflicn@163.com; Tel: 0451-55190274
  • 作者简介:E-mail: xnwang1982@yahoo.com.cn; Tel: 13204517968
  • 基金资助:

    本研究由东北农业大学创新团队项目(cxz003)资助。

Morphogenesis and Physiological Basis in Wheat Cultivars with Different Levels of Cold-Resistance during Cold Acclimation and Freezing Period

WANG Xiao-Nan1,FU Lian-Shuang1,2,LI Zhuo-Fu1,*,SUN Yan-Li1,WANG Yu-Bo1,LIU  Can1,WANG Jin-Wei1,CHEN Yu-Xing1   

  1. 1College of Agronomy,Northeast Agricultural University,Harbin 150030,China;2College of Agronomy,Shenyang Agricultural University,Shenyang 110161,China
  • Received:2008-12-01 Revised:2009-03-20 Published:2009-07-12 Published online:2009-05-19
  • Contact: LI Zhuo-Fu, E-mail: zflicn@163.com; Tel: 0451-55190274
  • About author:E-mail: xnwang1982@yahoo.com.cn; Tel: 13204517968

摘要:

为比较抗寒性不同的冬麦品种对低温胁迫的适应性,在低温驯化及封冻阶段对东农冬麦1(抗寒)、东农705 (较抗寒)和济麦22 (不抗寒) 3个品种的植株形态和叶、叶鞘、分蘖节的若干生理指标进行了调查。结果表明,东农冬麦1号在封冻前形成的分蘖数、分蘖叶数显著高于其他两个品种;低温胁迫下3个品种各个部位的含水量均降低,东农冬麦1号地上部含水量降低较快,分蘖节含水量降低较慢且保持较高水平,而济麦22地上部含水量降低较慢,分蘖节含水量降低较快。电导率变化表明,东农冬麦1号、东农705品系和济麦22叶片分别在封冻后30200 d死亡。东农冬麦1号叶片、叶鞘的可溶性总糖含量最高,济麦22最低;封冻期东农冬麦1号分蘖节可溶性总糖含量最高,济麦22最低。封冻后20 d东农705品系和济麦22叶片SOD失活,封冻后40 d东农冬麦1号叶片SOD仍有活性,调查期内济麦22各个部位SOD活性显著低于其他两个品种;封冻期东农冬麦1号叶鞘和分蘖节POD活性保持较高水平,东农705品系分蘖节POD活性较高,而叶鞘POD活性迅速降低,济麦22叶鞘和分蘖节POD活性均处于较低水平。

关键词: 寒地, 冬小麦, 抗寒性

Abstract:

“Dongnong dongmai 1” is the released cultivar of winter wheat (Triticum aestivum L.) in Heilongjiang province in China. However, the physiological metabolism in the over-wintering process of the cultivar is unclear. In this study, the plant morphological characters were investigated and several physiological parameters were measured with comparisons of three winter wheat cultivars, Dongnong Dongmai 1 (cold tolerant), Dongnong 705 (semitolerant to coldness), and Jimai 22 (cold susceptible), the objective was to understand the physiological adaptation to low temperature of Dongnong Dongmai 1. The numbers of leaf, tiller, and tiller leaf as well as water content in plant were investigated from 3 Oct. to 8 Nov. at a 5 d interval. Leaf, sheath, and tiller nod were sampled from 22 Oct. to 22 Dec. at a 10 d interval. The numbers of tiller and tiller leaf were significantly higher in Dongnong Dongmai 1 than in other cultivars before frozen period. Under cold stress, water content decreased in all parts of cultivars. Dongnong Dongmai 1 had the largest reduction of water content in leaf, but the water content in tiller nod declined slower and maintained the highest level among the three cultivars. In contrast, Jimai 22 had relatively higher water content in leaf and sharp reduction in tiller nod. The electric conductivity measurement indicated that leaves died at 30, 20, and 0 d after the frozen day in Dongnong Dongmai 1, Dongnong 705, and Jimai 22, respectively. The total soluble sugar content in leaves and leaf sheathes was the highest in Dongnong Dongmai 1, and the lowest in Jimai 22. Similarly, during frozen period, the content of total soluble sugar in tiller nod was the highest in Dongnong Dongmai 1 and the lowest in Jimai 22. Superoxide dismutase (SOD) in leaf was inactivated at 20 d after the frozen day in Dongnong 705 and Jimai 22, but maintained the certain activity even at 40 d after the frozen day in Dongnong Dongmai 1. Moreover, the activities of SOD in all parts of Jimai 22 were lower than those of other cultivars. During frozen period the activities of peroxidase (POD) were higher in sheath and tiller nod in Dongnong Dongmai 1, it was higher in tiller nod and lower in leaf sheath in Dongnong 705, and cignificantly lower both in sheath and tiller nod in Jimai 22.The results suggest that high resistance to coldness in Dongdong Dongmai 1 is probably related to the translocation of total soluble sugar from leaf to sheath and tiller nod. Low water content in plant and relative high activities of SOD and POD in sheath and tiller nod are also contributed to the cold-resistance of Dongnong Dongmai 1.

Key words: Cold region, Winter wheat, Cold resistance


[1] Equiza M A. Morphological, Anatomical and physiological responses related to differential shoot vs. root growth inhibition at low temperature in spring and winter wheat. Ann Bot, 2001, 87: 67-76

[2] Ma X-D(马晓娣), Wang L(王丽), Wang M(汪矛). Difference in relative conductivity and ultrastructure of leaf between two wheat cultivars with different thermotolerance under heat acclimation and heat stress. J China Agric Univ (中国农业大学学报), 2003, 8(5): 4-8 (in Chinese with English abstract)

[3] Gong Z-H(巩振辉). Plant Breeding (植物育种学). Beijing: China Agriculture Press, 2008. pp 281-284 (in Chinese)

[4] Liu Y-Y(刘艳阳), Li J-Z(李俊周), Chen L(陈磊), Cui D-Q(崔党群). Effect of low temperature stress on peroxidation product of membrane lipids and activity of related enzymes in wheat seedling leaves. J Triticeae Crops (麦类作物学报), 2006, 26(4): 70-73 (in Chinese with English abstract)

[5] Bohn M, Luthje S. Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. J Plant Physiol, 2007, 164: 146-156

[6] Liu W(刘炜), Sun D-L(孙德兰), Wang H(王红). Comparison of Ca-ATPase activity in seedling plasmolemma of cold resistant winter wheat vs. cold-sensitive spring wheat under 2°C low temperature. Acta Agron Sin (作物学报), 2003, 28(2): 227-232 (in Chinese with English abstract)

[7] Sun J-Y(孙金月), Zhao Y-T(赵玉田), Liang B-W(梁博文), Liu F(刘方), You Y(尤勇). Changes of hydroxyproline-rich glycoprotein wheat under cold stress and its relationship to cold resistance. J Plant Genet Resour (植物遗传资源学报), 2004, 5(1): 6-11 (in Chinese with English abstract)

[8] Li Y-H(李永华), Shang Y-P(尚玉萍), Zou Q(邹琦). Transformation and expression of Nicotiana tobaccum L. with gene encoding for the betaine aldehyde dehydrogenade from Triticum aestivum L. J Henan Agric Univ (河南农业大学学报), 2007, 41(1): 12-16 (in Chinese with English abstract)

[9] Zhang Z-L(张志良). Laboratory Guide to Plant Physiology(植物生理学实验指导). Beijing: Higher Education Press, 1990 (in Chinese)

[10] Wan F-S(万富士). Theory and Practice of Improvement for Over-winter Survival of Winter Wheat Cultivars (冬小麦品种越冬性改良理论与实践). Beijing; China Agricultural Science and Technology Press, 2006. pp 43-45 (in Chinese)

[11] Jin S-B(金善宝). Wheat Science in China (中国小麦学). Beijing: China Agriculture Press, 1996. pp 58-67 (in Chinese)

[12] Li R-Q(利容千), Wang J-B(王建波). Plant Stress Cell and Physiology (植物逆境细胞及生理学). Wuhan: Wuhan University Press, 2002. pp 160-164 (in Chinese)

[13] Lü L-H(吕丽华), Hu Y-K(胡玉昆), Li Y-M(李雁鸣). Free proline accumulation dynamics of two wheat cultivars with different drought-resistance under water stress. Acta Agric Boreal-Sin (华北农学报), 2006, 21(2): 75-75 (in Chinese with English abstract)

[14] Meng Y-L(孟亚利), Wang Y(王瑛), Wang L-G(王立国), Chen B-L(陈兵林), Zhang L-Z(张立桢), Shu H-M(束红梅), Zhou Z-G(周治国). Effect of the composite root population of wheat-cotton intercropping system on cotton root growth. Sci Agric Sin (中国农业科学), 2006, 39(11): 2228-2236 (in Chinese with English abstract)
Chance B. Assays of Caralase and Peroxidase Methods of Enzymology. New York: Academic Press, 1995. pp 764-775
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[3] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[4] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[5] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[6] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[7] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[8] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[9] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[10] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[11] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[12] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
[13] 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600.
[14] 张经廷,吕丽华,董志强,张丽华,姚艳荣,申海平,姚海坡,贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素[J]. 作物学报, 2019, 45(11): 1746-1755.
[15] 孟繁圆,冯利平,张丰瑶,张祎,伍露,王春雷,闫锦涛,彭明喜,莫志鸿,余卫东. 北部冬麦区冬小麦越冬冻害时空变化特征[J]. 作物学报, 2019, 45(10): 1576-1585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!