欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1320-1327.doi: 10.3724/SP.J.1006.2009.01320

• 耕作栽培·生理生化 • 上一篇    下一篇

利用冠层光谱监测小麦籽粒蛋白质积累动态

冯伟1,2,朱艳1,曹卫星1,*,朱云集2,郭天财2   

  1. 1南京农业大学/江苏省相信农业高技术研究重点实验室,江苏南京210095;2河南农业大学/国家小麦工程技术研究中心,河南郑州450002
  • 收稿日期:2008-11-24 修回日期:2009-03-16 出版日期:2009-07-12 网络出版日期:2009-05-19
  • 通讯作者: 曹卫星, E-mail: E-mail: caow@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30671215,30871448)和国家“十一五”科技支撑计划重大项目(2008BADA4B02,2006BAD02A07)资助。

Monitoring Grain Protein Accumulation Dynamics with Canopy Reflectance Spectra in Wheat

FENG Wei1,2,ZHU Yan1,CAO Wei-Xing1,*,ZHU Yun-Ji2,GUO Tian-Cai2   

  1. 1Nanjing Agricultural University/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province,Nanjing210095,China;2Henan Agricultural University/National Engineering Research Centre for Wheat,Zhengzhou 450002,China
  • Received:2008-11-24 Revised:2009-03-16 Published:2009-07-12 Published online:2009-05-19
  • Contact: CAO Wei-Xing, E-mail: E-mail: caow@njau.edu.cn

摘要:

20032006年连续3个生长季, 利用不同小麦品种在不同施氮水平下进行大田试验,在小麦不同生育期采集田间冠层高光谱数据并测定植株氮素含量、生物量和籽粒蛋白质积累量(GPA)。通过定量分析小麦籽粒蛋白质积累量、冠层氮素营养指标及高光谱参数的相互关系,确立了能够准确预测小麦籽粒蛋白质积累动态的敏感光谱参数及定量模型。结果表明,在籽粒灌浆期间冠层氮素营养指标(CNNI)自开花期随时间进程的积分累积值与对应时期籽粒蛋白质积累状况存在显著的定量关系,其中植株氮积累量(PNA)表现最好。对冠层氮素营养指标的光谱估算,在不同品种、氮素水平、生育时期和年度间可以使用统一的光谱模型。根据特征光谱参数-冠层氮素营养指标-籽粒蛋白质积累量这一技术路径,以冠层氮素营养指标为交接点将两部分模型链接,建立高光谱参数与籽粒蛋白质积累量间定量方程。经不同年际独立数据的检验,基于SDr/SDb–PNA–GPA技术路径建立模型可以估算小麦籽粒生长过程中蛋白质积累动态,预测精度和相对误差分别为0.95413.1%。因此,利用关键特征光谱参数可以实时监测小麦籽粒生长进程中蛋白质积累状况。

关键词: 小麦, 光谱信息, 籽粒蛋白质, 积累动态, 监测模型

Abstract:

Grain protein is an important index indicating wheat quality status, and nondestructive and quick assessments of grain protein accumulationdynamics is necessary for cultural regulation and quality classification in wheat (Triticum aestivum L.) production. The objectives of this study were to determine the relationships between plant nitrogen nutrition status, grain protein accumulation, and canopy reflectance spectra in winter wheat, therefore, to derive regression equations for monitoring grain protein accumulation with canopy hyper-spectral remote sensing. Three types of cultivars, i.e., high protein content (Xuzhou 26 and Yumai 34), medium protein content (Yangmai 10, Yangmai 12, and Huaimai 20), and low protein content (Ningmai 9) were used in three field experiments under different nitrogen levels in the growing seasons of 2003–2006. Time-course measurements were taken on canopy hyperspectral reflectance, plant weight, nitrogen content and grain protein accumulation (GPA) during the experimental periods. The results showed that the cumulative value of canopy nitrogen nutrition index (CNNI) from anthesis to specific day were highly correlated with grain protein accumulation at corresponding day across grain filling with the best predictor of plant N accumulation (PNA). According to the regression analyses between vegetation indices and canopy nitrogen nutrition index,several key spectral parameters could accurately estimate the changes in plant N status across different growth stages, nitrogen levels, and growing seasons with the same spectral parameters for each wheat cultivar. According to the technical route of key spectral parameters-canopy N nutrition index-grain protein accumulation, estimating models on grain protein accumulation were constructed on the basis of canopy hyper-spectral parameters by linking the above two models with canopy N nutrition index as intersection in wheat. Tests with other independent dataset showed that the key spectral index SDr/SDb on the basis of the technical route of SDr/SDb-PNA-GNA could be used to predict grain protein accumulation from 7d after anthesis to maturity, with the predictive precision (R2) of 0.954 and the relative error (RE) of 13.1%, respectively. It can be concluded that dynamic change of grain protein accumulation in wheat could be monitored directly with key vegetation spectral index.

Key words: Wheat(Triticumaestivum L.), Canopy spectral information, Grain protein, Accumulation dynamics, Monitoring model

[1] Huang Z, Turner B J, Dury S J, Wallis I R, Foley W J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens Environ, 2004, 93: 18-29

[2] Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ, 2000, 71: 158-182

[3] Liu Z-Y(刘占宇), Huang J-F(黄敬峰), Wu X-H(吴新宏), Dong Y-P(董永平), Wang F-M(王福民), Liu P-T(刘朋涛). Hyperspectral remote sensing estimation models on vegetation coverage of natural grassland. Chin J Appl Ecol (应用生态学报), 2006, 17(6): 997-102 (in Chinese with English abstract)

[4] Ding S-Y(丁圣彦), Li H-M(李昊民), Qian L-X(钱乐祥). Research advances in remote sensing techniques in estimation of vegetation biochemical material content. Chin J Ecol, 2004, 23(4): 109-117 (in Chinese with English abstract)

[5] Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens Environ, 2006, 101: 181-193

[6] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 337-354

[7] Hansen P M., Jørgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J Agric Sci, 2002, 139: 307-318

[8] Xue L-H(薛利红), Zhu Y(朱艳), Zhang X(张宪), Cao W-X(曹卫星). Predicting wheat grain quality with canopy reflectance spectra. Acta Agron Sin (作物学报), 2004, 30(10): 1036-1041 (in Chinese with English abstract)

[9] Wang Z J, Wang J H, Liu L Y, Huang W J, Zhao C J, Wang C Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crops Res, 2004, 90: 311-321

[10] Li Y-X(李映雪), Zhu Y(朱艳), Tian Y-C(田永超), You X-T(尤小涛), Zhou D-Q(周冬琴), Cao W-X(曹卫星). Relationship of grain protein content and relevant quality traits to canopy reflectance spectra in wheat. Sci Agric Sin (中国农业科学), 2005, 38(7): 1332-1338(in Chinese with English abstract)

[11] Basnet B, Apan A, Kelly R, Jensen T, Strong W, Butler D. Relating satellite imagery with grain protein content. In: Proceedings of the Spatial Sciences Conference, Canberra, Australia, 2003. pp 22-27

[12] Tian Y-C(田永超), Zhu Y(朱艳), Cao W-X(曹卫星), Fan X-M(范雪梅), Liu X-J(刘小军). Monitoring protein and starch accumulation in wheat grains with leaf SPAD and canopy spectral reflectance. Sci Agric Sin (中国农业科学), 2004, 37(6): 808-813 (in Chinese with English abstract)

[13] Woodard H J, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. J Plant Nutr, 1998, 21: 217-233

[14] Gebbing T, Schnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol, 1999, 121: 871-878

[15] Xie Z-J(谢祝捷), Jiang D(姜东), Cao W-X(曹卫星), Dai T-B(戴廷波), Qi J(荊奇). Effects of post-anthesis soil water status on the activities of key regulatory enzymes of starch and protein accumulation in wheat grains. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2003, 29(4): 309-316(in Chinese with English abstract)
Wang J-H(王纪华), Huang W-J(黄文江), Zhao C-J(赵春江), Yang M-H(杨敏华), Wang Z-J(王之杰). The inversion of leaf biochemical components and grain quality indicators of winter wheat with spectral reflectance. J Remote Sens (遥感学报), 2003, 7: 277-284(in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!