欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1778-1790.doi: 10.3724/SP.J.1006.2009.01778

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于细胞学和DNA序列的苎麻与其野生近缘类群系统关系研究

廖亮1,2,李同建2,刘中来2,邓辉胜2,徐玲玲2,*,潘其辉3,赖占均3,石庆华1,*   

  1. 1江西农业大学农学院,江西南昌330045;2江西九江学院生命科学学院,江西九江332000;3江西省麻类科学研究所,江西宜春336000
  • 收稿日期:2009-02-18 修回日期:2009-06-08 出版日期:2009-10-12 网络出版日期:2009-08-07
  • 通讯作者: 石庆华,E-mail: shiqh@public.nc.jx.cn;徐玲玲,E-mail: LingL239@163.com
  • 基金资助:

    本研究由江西自然科学基金项目(2008G2N0044)和江西省教育厅科技项目(GJJ08431)资助。

Phylogenetic Relationship of Ramie and Its Wild Relatives Based on Cytogenetics and DNA Sequences

LIAO Liang1,2,LI Tong-Jian2,LIU Zhong-Lai2,DENG Hui-Sheng2,XU Ling-Ling2,*,PAN Qi-Hui3,LAI Zhan-Jun3,SHI Qing-Hua1*   

  1. 1College of Agronomy,Jiangxi Agricultural University,Nanchang 330045,China;2College of Life Sciences,Jiujiang University,Jiujiang 332000,China;3Jiangxi Institute of Bast Fiber Crops,Yichun 336000,China
  • Received:2009-02-18 Revised:2009-06-08 Published:2009-10-12 Published online:2009-08-07
  • Contact: SHI Qing-Hua,E-mail: shiqh@public.nc.jx.cn;XU Ling-Ling,E-mail: LingL239@163.com

摘要:

为了了解苎麻与野生近缘种的系统学关系,更有效利用野生苎麻资源,通过细胞学观察和分子标记证据,对中国苎麻与其24个野生近缘类群进行了系统学分析。细胞学结果表明,苎麻间期核形态属于田中分类体系的前染色体型,而其野生近缘种分别属于前染色体型和分散型;苎麻和23个野生近缘物种(其中15个类群的染色体数目为首次报道)中,19个为二倍体(2n=28),而大叶苎麻组3个类群为倍体(2n=42)1个为倍体(2n=56)1个为倍体(2n=70)ITS序列和trnL-F序列分析表明,苎麻属可分成A(A1A2亚分支)B(B1B2亚分支)C 3个基本分支。根据分析结果本文提出苎麻属的两条演化路线: (1)前染色体型进化路线A1→A2,即腋球苎麻组苎麻组;(2)分散型进化路线B→C,即腋球苎麻组帚序苎麻组序叶苎麻组大叶苎麻组。

关键词: 苎麻属, 系统关系, 间期核, 染色体数目, ITS, trnL-F

Abstract:

There are 31 species and 12 varieties of Boehmeria Jacq. in China. Boehmeria nivea is an important fiber crop in China and even in East Asia, which has been cultivated for about 4700 years. Because of the dispute in systematic relationship of different sections of Boehmeria among different scholarsthe utilization or protection of B. nivea and its wild resources are restricted. In this paper, the karyomorphology of interphase nuclei and chromosome numbers were investigated in 19 species and 5 varieties, while the sequences of nuclearITS and chloroplast trnL-F were analyzed in 18 species and 9 varieties to explore the relationship between B. nivea and its wild relatives, to speculate how and where B. nivea originated and to effectively utilize plant resources of wild ramie. The cytological observation showed that the interphase karyomorphology of 24 taxa of Boehmeria should belong to pro-chromosome type and diffuse type according to the classification system of Tanaka, in which the interphase nuclei of Sect. Tilocnide and Sect. Boehmeria were pro-chromosome type and those of Sect. Zollingeriana, Sect. Phyllostachys and Sect. Duretia were pro-chromosome type and diffuse type. Cytogenetics examinatation of B. nivea and its 23 wild relatives (chromosome numbers of 15 taxa were reported in this paper at  the first time) showed that 19 taxa were diploid (2n=28), while three taxa in Sect. Duretia, were triploid (2n=42), one was tetraploid (2n=56) and one was pentaploid (2n=70). Analyses based on ITS and trnL-F sequences indicated that Boehmeria could be divided into three basic branches, A (including A1 and A2 sub-branch), B (including B1 and B2 sub-branch) and C. Different individuals or clones of B. clidemioides var. diffusa were gathered into different clades, indicating the hybridization and reticulate evolution among species in Boehmeria, andintrogressionbetween B. nivea and B. clidemioides var. diffusa. The wild core species resources of ramie should include both B. nivea and its three varieties and B. malabarica var. leioclada, B. clidemioides var. diffusa, which all should be intensively protected. It was inferred from the results two evolution routes of Boehmeria were: (1) pro-chromosome evolution line: A2 originated from A1, that is, Sect. Tilocnide from Sect. Boehmeria, and (2) diffuse evolution line: C originated from B, the order of origination is Sect. Boehmeria→Sect. Zollingeriana→Sect. Phyllostachys→Sect. Duretia. These two evolution routes may both originated from the same ancestor. It was implied based on the morphological traits of interphase nucleus and molecular experiment that the relationship of Sect. Zollongerie, Sect. Phyllostachys and Sect. Duretia was close, and the systematic relationship of these three sections based on morphological traits was not supported by the experimented evidences in cytology and molecular phylogeny in this study.

Key words: Boehmeria, phylogenetic relationship, Interphase nucleus, Chromosome numbers, ITS, trnL-F

[1] Lai Z-J(赖占钧). The Grass Linen of Jiangxi(江西夏布). Beijing: Scientific and Technologic Literature Publishing House, 2002 (in Chinese)

[2] Wang W-C(王文采). Revisio Boehmeriae Sinicae. Acta Bot Yunnanica (云南植物研究), 1981, 3(3): 307-328 (in Chinese)

[3] Wang W-C(王文采). Revisio Boehmeriae Sinicae (Cont.). Acta Bot Yunnanica (云南植物研究), 1981, 3(4): 401-416 (in Chinese)

[4] Wang W-C(王文采). Boehmeria中国植物志). Beijing: Science Press, 1995, 23(2): 187-312 (in Chinese) . In: Flora Reipublicae Popularis Sinicae (

[5] Chen J-R(陈家瑞), Friis I. Boehmeria. In: Flora of China (中国植物志).Beijing: Science Press, 2003. pp 164-174 (in Chinese)

[6] Satake Y. Boehmeria japonica Journ. Sci Univ Tokyo Sect III, 1936, 4: 467-542

[7] Zhang B(张波), Zheng C-Q(郑长清). Classification and evolution of group on the Boehmeria in China. 作物学报), 1998, 24(6): 775-781 (in Chinese with English abstract)Acta Agron Sin)

[8] Zhang B(张波), Zheng C-Q(郑长清), Zang G-G(臧巩固), Zhao L-N(赵立宁). The comparative morphology of Boehmeria in China. Sci Agric Sin (中国农业科学), 1998, 31(2): 36-10 (in Chinese with English abstract)

[9] Zhang B(张波), Zuo Z-M(左志明). On cytology study of wild Raim and relatives species in Guangxi. Guangxi Agric Sci (广西农业科学), 1996, (2): 73-77 (in Chinese)

[10] Zang G-G(臧巩固). A karyological study on five species in three section of genus Boehmeria中国麻作), 1993, (1): 1-6 (in Chinese with English abstract) . China’s Fiber Crops (

[11] Goldblatt P, Johnson D E. Index to Plant Chromosome Numbers. Available at http://mobot.mobot.org/W3T/Search/ipcn.html

[12] Tanaka R. Types of resting nuclei in orchidaceae. Bot Mag (Tokyo), 1971, 84: 118-122

[13] Tanaka R. The karyotype theory and wide crossing as an example in Orchidaceae. In: Hong D Y ed. Plant Chromosome Research. Hiroshima: Proceedings of the Sino-Japanese Symposium on Plant Chromosomes, 1989. pp 1-10

[14] Li M-X(李懋学). Plant Chromosome Research Technique (植物染色体研究技术). Changchun: Northeast Forestry University Press, 1991. pp 146-148 (in Chinese)

[15] Guo A-P(郭安平). Phylogeny of Genus Boehmerla Jacq. Reconstructed by RAPD Fingerprinting. PhD Dissertation of Hunan Agricultural University, 1999 (in Chinese with English abstract)

[16] Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15

[17] White T J, Bruns T, Lee S, Taylor J W. Amplification and direct sequencing of fungal ribosomal RNA genesfor phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, White T J, eds. PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press. 1990. pp 315-322

[18] Taberlet P T, Gielly L, Patou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol, 1991, 17: 1105-1109

[19] Joseph S, Rusell D W, eds. Huang P-T(黄培堂) trans. Molecular Cloning: A Laboratory Manual, 3rd edn (分子克隆实验指南·第三版). Beijing: Science Press, 2002. pp 2-137 (in Chinese)

[20] Thompson J D, Gibson T J, Plewinak F, Jeanmougin F, Higgins D G. The Clustal-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25: 4876-4882

[21] Swofford D L. PAUP4.0b10. Phylogenetic analysis using parsimony (and other methods). Ver 4. Sunderland, MA: Sinauer Associates, 2002

[22] Huelsenbeck J P, Ronquist F. MrBayes. Bioinformatics, 2001, 17: 754

[23] Nylander J A. MrModeltest ver 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, 2004

[24] Chen S-C(陈士超), Yang H(杨红), Li S(李珊), Zhu J(祝建), Fu C-X(傅承新). Bayesian inference and its application in the molecular phylogeny of liliales. Acta Bot Yunnanica (云南植物研究), 2007,29(2): 161-166 (in Chinese with English abstract)

Zhang Y(张原), Zhang Z-W(张正旺), Zheng N(郑楠). The application of likelihood ratio tests and Bayesian inference in the molecular phylogeny of Phasianidae. J Beijing Norm Univ (Nat Sci) (北京师范大学学报·自然科学版), 2003, 39(2): 250-257 (in Chinese with English abstract)

[1] 张力岚,王俊,万雪贝,徐益,张列梅,方平平,祁建民,张立武. 主要麻类作物的ITS序列分析与系统进化[J]. 作物学报, 2017, 43(06): 862-874.
[2] 陈锋,李向楠,曹莹莹,孙建喜,张福彦,董中东,崔党群. 小麦puroindoline b-2基因变异与产量相关性状的分析[J]. 作物学报, 2014, 40(01): 17-21.
[3] 刘新龙, 苏火生, 马丽, 陆鑫, 应雄美, 蔡青, 范源洪. 基于rDNA-ITS序列探讨甘蔗近缘属种的系统进化关系[J]. 作物学报, 2010, 36(11): 1853-1863.
[4] 马燕玲,程须珍,王丽侠,王素华,赵丹. Ceratotropis亚属基于SSR标记和ITS序列的分类与进化分析[J]. 作物学报, 2010, 36(09): 1585-1595.
[5] 钱锦,孙毅,段永红. 普通小麦rDNA的ITS区及其基因组起源[J]. 作物学报, 2009, 35(6): 1021-1030.
[6] 陈辉;范源洪;向余颈攻;蔡青;张亚平. 从核糖体DNA ITS区序列研究甘蔗属及其近缘属种的系统发育关系[J]. 作物学报, 2003, 29(03): 379-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!