欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 2008-2014.doi: 10.3724/SP.J.1006.2009.02008

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花育性相关基因GhPG2的克隆与表达分析

侯思宇,张锐,郭三堆*   

  1. 中国农业科学院生物技术研究所/农作物基因资源与基因改良国家重大科学工程,标记100081
  • 收稿日期:2009-01-08 修回日期:2009-05-30 出版日期:2009-11-12 网络出版日期:2009-08-07
  • 通讯作者: 郭三堆, Email: gsdui@mail.caas.net.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30771371)资助。

Cloning and Expression Profile Analysis of Ghpg2 Gene Associated with Fertility in Cotton(Gossypium hirsutum L.)

HOU Si-Yu,ZHANG Rui,GUO San-Dui*   

  1. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081
  • Received:2009-01-08 Revised:2009-05-30 Published:2009-11-12 Published online:2009-08-07
  • Contact: GUO San-Dui, Email: gsdui@mail.caas.net.cn

摘要:

多聚半乳糖醛酸酶家族是一个细胞壁水解酶,在许多高等植物的花粉中都具有高水平外切多聚半乳糖醛酸酶(PG)活性,可能在花粉成熟和花粉管伸长中发挥重要作用。利用已报道与恢复基因连锁的分子标记STS679筛选陆地棉Y18恢复系核基因组BAC文库,获得一个阳性克隆Z55E7,对该克隆测序获得6个基因,其中一个为编码多聚半乳糖醛酸酶(polygalacturonase)基因,暂被命名为GhPG2。在棉花细胞质雄性不育系、保持系和恢复系中对该基因进行序列和表达分析,以便进一步了解该基因与棉花细胞质雄性不育的关系。从BAC克隆中分离到GhPG2基因,对其进行序列分析,以半定量RT-PCR和实时定量PCR分析该GhPG2基因在棉花恢复系、保持系和不育系各个组织中的表达模式。分离到GhPG2基因的基因组序列为1 518 bp,其开放阅读框序列为1 239 bp,共编码412个氨基酸,包含PG基因家族的4个保守结构域。系统进化树分析表明,GhPG2基因与其他物种花粉表达的PG基因同属C分支。表达分析表明, 该基因在恢复系和保持系的花药、花瓣和VI级花蕾中高表达,而不育系的相应组织该基因表达量明显降低。GhPG2基因归类于花粉表达的一类PG基因。实验结果暗示GhPG2基因可能与棉花正常的花器官发育相关。

关键词: 棉花, 多聚半乳糖醛酸酶, GhPG2, 花粉发育, 表达谱分析

Abstract:

Polygalacturonase (PGs) gene family is a kind of proteolytic enzyme in cell wall. A number of higher plants have a higher level of the excision activity at pollen. Polygalacturonase plays an important role on the processes of pollen mature and pollen tube growth. Through BAC library screening, a BAC clone Z55E7 was obtained and congregated with molecular marker STS679 by using PCR strategy. Sequencing analysis results showed that there were six genes in the clone. One of them was a Polygalacturonase gene in cotton, named GhPG2. The expression profiles analysis of this gene would help to know the relationshipof GhPG2 gene with the molecular mechanism of cotton cytoplasm male sterile. GhPG2 gene was isolated from BAC clone. The amino acids and nucleotide sequence of the gene were analyzed by bioinformation software. GhPG2 gene expression levels of different tissues in CMS line, maintainer and restorer line were analyzed by RT-PCR and real-time quantitative PCR method. The gene with the sequence of 1518 bp and an open reading frame of 1239bp coded 412 amino acids and included four conserved domains. Multiple alignment and phylogenetic analysis based on the amino acid sequences showed that GhPG2 was categorized as a gene expressed in pollen. GhPG2 gene expression level in anther, petal and the sixth grade flower bud was higher in the maintainer and restorer lines and lower obviously in the CMS line. And its relative transcript levels were 1.73, 1.45; 3.7, 3.4; 1.63, and 1.39 folds compared with petal, anther and VI flower bud of sterile line, respectively.The gene expression level in anther, petal and the sixth grade flower bud was no significance between the maintainer and restorer line with relative transcript levels were 4.33, 4.08; 13.29, 12.12; 3.25 and 3.10 folds, respectively. It is speculated that GhPG2 gene is of significance in floral organ development in cotton.

Key words: Cotton, GhPG2, Flower Development, Polygalacturonase, Expression profiling

[1] Liu L-C(刘乐承), Zhang T(张弢), Cao J-S(曹家树). Advances in research on molecular biology of plant pollen development. J Yangtze Univ (长江大学学报), 2006, 3(3): 174-178 (in Chinese with English abstract)

[2] Xing C-Z(邢朝柱(in Chinese with English abstract)), Jing S-R(靖深蓉), Xing Y-H(邢以华). Review and prospect on cotton heterosis utilization and study in China. Cotton Sci (棉花学报), 2007, 19(5): 337-345

[3] Feng C D, Stewart J M D, Zhang J F. STS markers linked to the Rf1 fertility restorer gene of cotton. Theor Appl Genet, 2005, 110: 237-243

[4] Yin J M, Guo W Z, Yang L M, Liu L W, Zhang T Z. Physical mapping of the Rf1fertility-restoring gene to a 100 kb region in cotton. Theor Appl Genet, 2006, 112: 1318-1325

[5] Hall B G. Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Mol Biol Evol, 2005, 22: 792-802

[6] Wu Y-T(武耀廷), Liu J-Y(刘进元). A modified hot borate method for efficient isolation of total rna from different cotton tissues. Cotton Sci (棉花学报), 2004, 16(2): 67-71 (in Chinese with English abstract)

[7] Jiang P D, Zhang X Q, Zhu Y G, Zhu W, Xie H Y, Wang X D. Metabolism of reactive oxygen species in cotton cytoplasimic male sterility and its restoration. Plant Cell Rep, 2007, 26: 1627-1634

[8] Allen R L, Lonsdale D M. Sequence analysis of three members of the maize polygalacturonase gene family expressed during pollen development. Plant Mol Biol, 1992, 20: 343-345

[9] Chiang J Y, Shu S W, Ko C W, Wang C S. Biochemical characterization of a pollen-specific cDNA encoding polygalacturonase in Lilium longiflorum. Plant Sci, 2006, 170: 433-440
[10] Tebbutt S J, Rogers H J, Lonsdale D M.Characterization of a tobacco gene encoding a pollen-specific polygalacturonase. Plant Mol Biol, 1994, 25: 283-297
[11] Sander L, Child R, Ulvskov P, Albrechtsen M, Borkhardt B. Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: Evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth. Plant Mol Biol, 2001, 46: 469-479
[12] John M E, Petersen M W. Cotton (Gossypium hirsutum L.) pollen-specific polygalacturonase mRNA: Tissue and temporal specificity of its promoter in transgenic tobacco. Plant Mol Biol, 1994, 26: 1989-1993
[13] Kim J, Shiu S H, Thoma S, Li W H, Patterson S E. Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol, 2006, 7: R87
[14] González-Carranza Z H, Elliott K A, Roberts J A. Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. J Exp Bot, 2007, 58: 3719-3730
[15] Cosgrove D J. Expansive growth of plant cell walls. Plant Physiol Biochem, 2000, 38: 109-124
[16] Roberts J A, Elliott K A, Gonzalez-Carranza Z H. Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol, 2002, 53: 131-158
[17] Roberts J A, Whitelaw C A, Gonzalez-Carranza Z H, McManus M T. Cell separation processes in plants-models, mechanisms and manipulation. Annl Bot, 2000, 86: 223-235
[18] Patterson S E. Cutting loose: Abscission and dehiscence in Arabidopsis. Plant Physiol, 2001, 126: 494-500
[19] Dubald M, Barakate A, Mandaron P, Mache R. The ubiquitous presence of exopolygalacturonase in maize suggests a fundamental cellular function for this enzyme. Plant J, 1993, 4: 781-791
[20] Torki M, Mandaron P, Mache R, Falconet D. Differential expression of a polygalacturonase gene family in Arabidopsis thaliana. Mol Gen Genet, 1999, 261: 948-952
[21] Zhang Q, Huang L, Liu T T, Yu X L, Cao J S. Functional analysis of a pollen-expressed polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). Plant Cell Rep, 2008, 27: 1207-1215
[22] Huang L Cao J S, Zhang A H, Ye Y Q, Zhang Y C, Liu T T. The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. J Exp Bot, 2009, 60: 301-313
[23] Hadfield K A, Bennett A B. Polygalacturonases: Many genes in search of a function. Plant Physiol, 1998, 117: 337-343
[24] Bussink H J D, Buxton F P, Visser J. Expression and sequence comparison of the Aspergillus niger and Aspergillus tubigensis genes encoding polygalacturonase II. Curr Genet, 1991, 19: 467-474
[25] Robert L S, Allard S, Gerster J L, Cass L, Simmonds J. Isolation and characterization of a polygalacturonase gene highly expressed in Brassica napus pollen. Plant Mol Biol, 1993, 23: 1273-1278
Zhang J F, Turley R B, Stewart J M. Comparative analysis of gene expression between CMS-D8 restored plants and normal non-restoring fertile plants in cotton by differential display. Plant Cell Rep, 2008, 27: 553-561
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[14] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[15] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!