欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1884-1892.doi: 10.3724/SP.J.1006.2009.01884

• 耕作栽培·生理生化 • 上一篇    下一篇

灌水时期和灌水量对小麦耗水特性和旗叶光合作用及产量的影响

孟维伟1,2,张永丽1,马兴华1,石玉3,于振文1,*   

  1. 1山东农业大学农业部作物生理生态与栽培重点开放实验室,山东泰安271018;2山东省无棣县农业局,山东无棣251900;3山东省泰安市农业局,山东泰安271000
  • 收稿日期:2008-11-13 修回日期:2009-03-17 出版日期:2009-10-12 网络出版日期:2009-08-07
  • 通讯作者: 于振文,Tel:0538-8241484;E-mail:yuzw@sdau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871478)和山东农业大学青年科技创新基金项目(23454)资助。

Effects of Irrigation Stage and Amount on Water Consumption Characteristics,Flang Leaf Photosynthesis,and Grain Yield in Wheat

MENG Wei-Wei1,2,ZHANG Yong-Li1,MA Xing-Hua1,SHI Yu3,YU Zhen-Wen1,*   

  1. 1Key Laboratory of Crop Ecophysiology and Cultivation,Ministry of Agriculture,Shandong Agricultural University,Tai'an 271018,China;2Agriculture Bureau of Wudi County,Wudi 251900,China;3Agriculture Bureau of Tai'an City,Tai'an 271000,China
  • Received:2008-11-13 Revised:2009-03-17 Published:2009-10-12 Published online:2009-08-07
  • Contact: YU Zheng-Wen,Tel:0538-8241484;E-mail:yuzw@sdau.edu.cn

摘要:

2004—20052005—2006小麦生长季,以济麦20、泰山23和泰山22为试验材料,研究了不灌水(W0)、拔节水60 mm (W1)、拔节水60 mm+开花水60 mm (W2)和拔节水60 mm+开花水60 mm+灌浆水60 mm (W3) 4个灌水处理条件下小麦耗水特性、旗叶光合作用和产量变化。结果表明,20042005生长季,济麦20和泰山23均以W2处理籽粒产量最高,耗水量和灌水效率分别高于和低于W1处理;两品种的水分利用效率均以W1W2处理高于其他处理,其中济麦20W1W2处理无显著差异,而泰山23W1处理高于W2处理。20052006生长季,济麦20和泰山22分别以W1W2处理获得最高籽粒产量,两处理的耗水量(451.3 mm459.2 mm)无显著差异;两品种的水分利用效率均以W0处理最高,W3处理最低,其中济麦20W1处理高于W2处理,而泰山22在两处理间无显著差异。随灌水量的增加,土壤供水量和降水量占总耗水量的百分率降低,灌水量占总耗水量的百分率增大。济麦20W0处理的旗叶光合速率和磷酸蔗糖合成酶活性在灌浆初期与W1W2W3处理无显著差异,灌浆中后期显著降低,但W0处理有利于蔗糖向籽粒转移,灌浆后期旗叶中蔗糖滞留较少,这是W0处理的粒重显著高于其他处理的生理原因之一。综合考虑籽粒产量、水分利用效率和灌水效率,在未灌底墒水条件下,济麦20和泰山23以拔节水灌60 mm或拔节水和开花水各灌60 mm为节水高产的模式;在灌底墒水60 mm条件下,济麦20以拔节水灌60 mm、泰山22以拔节水灌60 mm或拔节水和开花水各灌60 mm为节水高产的模式。

关键词: 灌水时期, 灌水量, 小麦, 耗水特性, 光合作用, 籽粒产量

Abstract:

Shortage of water resource has become one of the major factors limiting wheat (Triticum aestivum L.) production in North China. Irrigation plays an important role to obtain high grain yield. Currently, studies on water consumption characteristics and the physiological basis of yield formation in wheat are seldom reported. In this study, three wide planted cultivars, Jimai 20, Taishan 23, and Taishan 22 were used in two independent experiments in 2004–2005 and 2005–2006 growing seasons. There were four irrigation treatments in both experiments, i.e., no irrigation (W0), soil water plus one irrigation at jointing stage (W1), soil water plus two irrigations at jointing and anthesis stage (W2), soil water plus three irrigations at jointing, anthesis, and grain-filling stage (W3). Each irrigation supplied water of 60 mm. In the 2004–2005 growing season, the highest grain yields of Jimai 20 and Taishan 23 were obtained in W2 treatment with water consumptions of 429.8 and 453.0 mm, respectively, which were higher than those of W1 treatment (402.9 and 416.6 mm). However, the irrigation efficiency of W2 treatment was lower than that of W1 treatment. The water use efficiencies (WUE) of W1 and W2 treatments were both higher than those of other treatments in the two cultivars. In Jimai 20, there was no significant difference between W1 and W2 treatments, whereas in Taishan 23, W1 had higher WUE than W2. In the 2005–2006 growing season, Jimai 20 yield the highest in W1 treatment, and Taishan 22 in W2 treatment, with water consumptions of 451.3 and 459.2 mm, respectively. The highest and the lowest WUE were in W0 and W3 treatments in both Jimai 20 and Taishan 22, respectively. In Jimai 20, the WUE was higher in W1 than in W2, whereas there was no significant difference between W1 and W2 in Taishan 22. With the increase of irrigation amount, the percentage of soil water supply amount and precipitation to total water consumption amount decreased and the percentage of irrigation amount to total water consumption amount increased. Compared with W1, W2, and W3 treatments, W0 treatment had lower flag leaf photosynthetic rate and sucrose phosphate synthase activity at medium and late grain-filling, but at early grain-filling, there was no significant difference between W0 and W1, W2, W3, and the transfer of sucrose from flag leaf to grain was more favorable in W0 than in W1, W2, and W3, thus, Jimai 20 obtained the highest grain weight in W0 treatment. In wheat production under conditions similar to this study, the optimal irrigation regimes are suggested as 60–120 mm for Jinmai 20 and Taishan 23 at jointing or at jointing and anthesis stages without irrigating base water, and 60 mm for Jinmai 20 at jointing or 60–120 mm for Taishan 22 at jointing or at jointing and anthesis stages with irrigating base water 60 mm .

Key words: Irrigation stage, Irrigation amount, Wheat, Water consumption characteristic, Photosynthesis, Grain yield

[1] Nielsen D C, Vigil M F. Legume green fallow effect on soil water content at wheat planting and wheat yield. Agron J, 2005, 97: 684-689

[2] Stone L R, Schlegel A J. Yield-water supply relationships of grain sorghum and winter wheat. Agron J, 2006, 98: 1359-1366

[3] Zhang Z-X (张忠学), Yu G-R (于贵瑞). Effects of irrigation scheduling on development and water use efficiency in winter wheat. J Irrig Drainage (灌溉排水学报), 2003, 22(2): 1-4(in Chinese with English abstract)

[4] Hu M-Y(胡梦芸), Zhang Z-B(张正斌), X P(徐萍), Dong B-D(董宝娣), Li W-Q(李魏强), Li J-J(李景娟). Relationship of water use efficiency with photoassimilate accumulation and transport in wheat under deficit irrigation. Acta Agron Sin (作物学报), 2007, 33(10): 1711-1719 (in Chinese with English abstract)

[5] Ren W(任巍), Yao K-M (姚克敏), Yu Q(于强), Ou-Yang Z (欧阳竹), Wang L(王菱). Effect of water control in combination of depth and amount on dry matter partition and water use efficiency of winter wheat. Chin J Eco-Agric (中国生态农业学报), 2003, 11(4): 92-94 (in Chinese with English abstract)

[6] Li A G, Hou Y S, Wall G W, Trent A, Kimball B A, Pinter P J. Free-air CO2 enrichment and drought stress effects on grain filling rate and duration in spring wheat. Crop Sci, 2000, 40: 1263-1270

[7] Zhang B C, Li F M, Huang G B, Cheng Z Y, Zhang Y H. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agric Water Manag, 2006, 79: 28-42

[8] Kang S Z, Zhang L, Liang Y L, Hu X T, Cai H J, Gu B J. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric Water Manage, 2002, 55: 203-216

[9] Xu Z-Z (许振柱), Yu Z-W (于振文). Effects of limited irrigation on water use of winter wheat. Agric Res Arid Areas (干旱地区农业研究), 2003, 21(1): 6-10 (in Chinese with English abstract)

[10] Ma R-K(马瑞昆), Jia X-L(贾秀领), Zhang Q-G(张全国), Zhang L-H(张丽华), Yao Y-R(姚艳荣), Yang L-H(杨利华). Physiological characteristics of water in wheat cultivar SX733: The effect of water-saving irrigation. Acta Agron Sin (作物学报), 2007, 33(9): 1446-1451 (in Chinese with English abstract)

[11] Zhao G-C(赵广才), Chang X-H(常旭虹), Liu L-H(刘利华), Yang Y-S(杨玉双), Li Z-H(李振华), Zhou S-Y(周双月), Guo Q-X(郭庆侠), Liu Y-J(刘月洁). Grain yield and protein components responses to irrigation in strong gluten wheat. Acta Agron Sin (作物学报), 2007, 33(11): 1828-1833 (in Chinese with English abstract)

[12] Wang S-F(王淑芬), Zhang X-Y(张喜英), Pei D(裴冬). Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat. Trans CSAE (农业工程学报), 2006, 22(2): 27-32 (in Chinese with English abstract)

[13] Liu Z-J (刘增进), Li B-P (李宝萍), Li Y-H (李远华), Cui Y-L(崔远来).Research on the water use efficiency and optimal irrigation schedule of the winter wheat. Trans CSAE (农业工程学报), 2004, 20(4): 58-63(in Chinese with English abstract)

[14] Jiang X-D(江晓东), Li Z-J(李增嘉), Hou L-T(侯连涛), Wang Y(王芸), Wang X(王雪), Yan H(颜红). Impacts of minimum tillage and no-tillage systems on soil NO3--N content and water use efficiency of winter wheat/summer corn cultivation. Trans CSAE (农业工程学报), 2005, 21(7): 20-24(in Chinese with English abstract)

[15] Li H-S(李合生). Experimental Principles and Techniques for Plant Physiology and Biochemistry (植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000. pp 195-197(in Chinese)

[16] Doehlert D C, Kuo T M, Felker F C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol, 1988, 86:1013-1019

[17] Tsai C Y, Salamini F, Nelson O E. Enzymes of carbohydrate metabolism in the development endosperm of maize. Plant Physiol, 1970, 46: 299-306

[18] Yu X-J(於新建). Laboratory Manual for Botany and Physiology (植物生理学实验手册). Shanghai: Shanghai Scientific and Technical Publishers, 1985. pp 148-150 (in Chinese)

[19] Wardlaw I F, Willenbrink J. Carbonhydrate stronge and mobilization by the culm of wheat between heading and grain maturity: The relation to sucrose synthase and sucrose-phosphate synthase. Aust J Plant Physiol, 1994, 21: 251-271

[20] Xu Z Z, Yu Z W. Nitrogen metabolism in flag leaf and grain of wheat in response to irrigation regimes. J Plant Nutr Soil Sci, 2006, 169: 118-126

[21] Fan X-M(范雪梅), Jiang D(姜东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星). Effects of nitrogen supply on flag leaf photosynthesis and grain starch accumulation of wheat from its anthesis to maturity under drought or waterlogging. Chin J Appl Ecol (应用生态学报), 2005, 16(10): 1883-1888 (in Chinese with English abstract)

[22] Tan W-N(谭维娜), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星), Jiang D(姜东). Effect of post-anthesis waterlogging on flag leaf photosynthetic characteristics and yield in wheat. J Triticeae Crops (麦类作物学报), 2007, 27(2): 314-317 (in Chinese with English abstract)

[23] Ma X-M (马新明), Xiong S-P(熊淑萍), Li L(李琳), Zhang J-J(张娟娟), He J-G(何建国). Effects of soil moisture on photosynthetic characteristics of different specialized end-uses winter wheat at their later growth stages and on their yields. Chin J Appl Ecol (应用生态学报), 2005, l6(1): 83-87(in Chinese with English abstract)

[24] Zhao H(赵辉), Dai T-B(戴廷波), Jiang D(姜东), Jing Q(荆奇), Cao W-X(曹卫星). Effects of drought and waterlogging on flag leaf post-anthesis photosynthetic characteristics and assimilates translocation in winter wheat under high temperature.Chin J Appl Ecol(应用生态学报), 2007, 18(2): 333-338 (in Chinese with English abstract)

[25] Liang Y-L(梁银丽), Kang S-Z(康绍忠). Effects of water saving irrigation on photosynthesis and yield of winter wheat (Triticum aestivum L.). Acta Univ Agric Boreali-Occident (西北农业大学学报), 1998, 26(4): 16-19(in Chinese with English abstract)

[26] Shan L(山仑), Xu M(徐萌). Water-saving agriculture and its physio-ecological bases. Chin J Appl Ecol(应用生态学报), 1991, 2(1): 70-76 (in Chinese with English abstract)

[27] Ju H (居辉), Lan X(兰霞), Li J-M(李建民), Zhou D-X(周殿玺), Su B-L(苏宝林). Effects of different irrigation systems on winter wheat yield and water consumption. J Chin Agric Univ (中国农业大学学报), 2000, 5(5): 23-29 (in Chinese with English abstract)

[28] Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manage, 2003, 63: 37-56
Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric Water Manage, 2006, 85: 211-218
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!