欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 285-295.doi: 10.3724/SP.J.1006.2010.00276

• 耕作栽培·生理生化 • 上一篇    下一篇

覆盖旱种对水稻产量与品质的影响

张自常,孙小淋,陈婷婷,刘立军,杨建昌*   

  1. 扬州大学江苏省作物遗传生理重点实验室,江苏扬州 225009
  • 收稿日期:2009-07-21 修回日期:2009-10-03 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: 杨建昌,E-mail: jcyang@yzu.edu.cn
  • 基金资助:
    本研究由国家自然科学基金项目(30771274),国家科技攻关计划项目(2006BAD02A13-3-2),2008年中央级科研院所基本科研业务费专项基金项目(农业)(200803030),江苏省自然科学基金-创新学者攀登项目(BK2009005)和教育部高等学校博士学科点专项科研基金项目(200811170002)资助。

Effects of Non-flooded Mulching Cultivation on the Yield and Quality of Rice

ZHANG Zi-Chang,SUN Xiao-Lin,CHEN Ting-Ting,LIU Li-Jun,YANG Jian-Chang   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
  • Received:2009-07-21 Revised:2009-10-03 Published:2010-02-10 Published online:2009-12-21
  • Contact: YANG jian-chang,E-mail: jcyang@yzu.edu.cn

摘要:

以超级稻武粳15 (粳稻)和两优培九(籼稻)为材料,从移栽至成熟进行覆膜旱种(PM)、覆草旱种(SM)和裸地旱种(NM)处理,以水种(TF)为对照。结果表明,与TF相比,旱种水稻产量都有不同程度的降低,NM、PM和SM的减产率分别为38.7%~46.5%,9.8%~17.4%和1.7%~7.0%,NM和PM的产量与TF有显著差异,SM的产量与TF差异不显著。SM改善了稻米的加工品质、外观品质和蒸煮品质,NM和PM则降低了稻米这些品质;SM还提高了稻米的最高黏度和崩解值,降低了消减值,NM和PM的结果则相反。两品种的结果趋势一致。SM提高了灌浆期的根系氧化力、叶片光合速率和籽粒中蔗糖-淀粉代谢途径关键酶活性,NM和PM则降低了上述生理指标值。在SM条件下,结实期较高的根系活力、叶片光合速率和籽粒中蔗糖-淀粉代谢途径关键酶活性是获取较高产量和较好稻米品质的重要生理原因。

关键词: 水稻, 腹膜旱种, 覆草旱种, 产量, 品质

Abstract:

Plastic film or straw mulching cultivation under non-flooded condition has been considered as a new water-saving technique in rice production. This study aimed to investigate the yield performance in terms of quality and quantity under such practices. Two super rice cultivars, Wujing 15 (a japonica cultivar) and Liangyoupeijiu (an indica hybrid cultivar) were used with four cultivation treatments from transplanting to maturity: traditional flooding as control (TF), no-flooded plastic film mulching (PM), non-flooded wheat straw mulching (SM), and no flooding and no mulching (NM). Compared with that under TF, grain yield showed some reduction under all the non-flooded cultivations but differed largely among the treatments. The reduction in yield was 38.7–46.5% under NM, 9.8–17.4% under PM, and 1.7–7.0% under SM. The difference in grain yield was significant between NM and TF or between PM and TF, and was not significant between SM and TF. SM significantly improved milling, appearance, and cooking qualities, whereas PM or NM decreased these qualities. SM also significantly increased the peak viscosity and breakdown value, and reduced setback value, and PM or NM had the opposite effect. The two cultivars showed similar trends in quality and quantity of rice yield. SM significantly increased root oxidation activity, leaf photosynthetic rate, and activities of key enzymes in sucrose-to-starch conversion in grains during the grain filling period, whereas PM and NM significantly reduced these parameters. The results indicate that SM could not only maintain a high grain yield, but also improve quality of rice. Increases in leaf photosynthetic rate, root activity, and activities of the key enzymes involved in the sucrose-starch metabolic pathway in grains under SM contributed to a higher grain yield and better quality of rice.

Key words: Rice, Non-flooded plastic film mulching cultivation, Non-flooded wheat straw mulching cultivation, Grain yield, Grain quality


[1]    
Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Commun Soil Sci Plant Anal, 2003, 34: 259–270


[2]    
Fageria N K. Yield physiology of rice. J Plant Nutr, 2007, 30: 843–879


[3]    
Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manage, 2004, 65: 193–210


[4]    
Belder P, Spiertz J H J, Bouman B A M, Lu G, Tuong T P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Res, 2005, 93: 169–185


[5]    
Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Res, 1997, 52: 231–248


[6]    
Liu X J, Wang J C, Lu S H, Zhang F S, Zeng X Z, Ai Y W, Peng S B, Christie P. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems. Field Crops Res, 2003, 83: 297–311


[7]    
Huang Y-D(黄义德), Zhang Z-L(张自立), Wei F-Z(魏凤珍), Li J-C(李金才). Ecophysiological effect of dry-cultivated and plastic film-mulched rice planting. Appl Ecol (应用生态学报), 1999, 10(3): 305–308 (in Chinese with English abstract)


[8]    
Liang Y-C(梁永超), Hu F(胡锋), Yang M-C(杨茂成), Zhu X-L(朱遐亮), Wang G-P(王广平), Wang Y-L(王永乐). Mechanisms of high yield and irragation water use efficiency of rice in plastic film muched dryland. Sci Agric Sin (中国农业科学), 1999, 32(1): 26–32 (in Chinese with English abstract)


[9]    
Fan M S, Liu X J, Jiang R F, Zhang F S, Lu S H, Zeng X Z, Christie P. Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant Soil, 2005, 277: 265–276


[10] 
Lu X H, Wu L H, Pang L J, Li Y S, Wu J G, Shi C H, Zhang F S. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. J Sci Food Agric, 2007, 87: 334–339


[11] 
Liu T-X(刘天学), Ji X-E(纪秀娥). Effects of crop straw burning on oil organic matter and soil microbes. Soil (土壤), 2003, 35(4): 347–348 (in Chinese)


[12] 
Miura Y, Kanna T. Emissions of trace gases (CO2, CO, CH4, and N2O) resulting from rice straw burning. Soil Sci Plant Nutr, 1997, 43: 849–854


[13] 
Liu X J, Ai Y W, Zhang F S, Lu S H, Zeng X Z, Fan M S. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Nutr Cycl Agroecosyst, 2005, 71: 289–299


[14] 
Zhang J-D(章骏德), Liu G-P(刘国屏), Shi Y-N(施永宁). Experimental Method for Plant Physiology (植物生理实验法). Nanchang: Jiangxi People’s Publisher, 1982. pp 52–57 (in Chinese)


[15] 
Supervising Department of Quality and Technology of China (国家质量技术监督局). The National Standard of the People’s Republic of China (中华人民共和国国家标准). Good Quality of Rice Grain (优质稻谷). GB/T17891-1999, 1999 (in Chinese)


[16] 
Ministry of Agriculture, The People’s Republic of China (中华人民共和国农业部). Good Quality and Edible Rice Grains (优质食用稻米). NY147-88, 1988 (in Chinese)


[17] 
Han Y P, Xu M L, Liu X Y, Yan C J, Korban S S, Chen X L, Gu M H. Genes coding for starch branching enzymes are major contributors to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Sci, 2004, 166: 357–364


[18] 
Yang J-C(杨建昌), Wang Z-Q(王志琴), Chen Y-F(陈义芳), Cai Y-X(蔡一霞), Liu L-J(刘立军), Zhu Q-S(朱庆森). Preliminary studies of grain yield and quality of dry-cultivated rice. Jiangsu Agric Res (江苏农业研究), 2000, 21(3): 1–5 (in Chinese with English abstract)


[19] 
Hasegawa T, Fujimura S, Shimono H, Iwama K, Jiteuyama Y. Rice growth and developing limited by root zone temperature. In: Morita S, ed. Proceedings of the Sixth Symposium of the International Society for Root Research. Nagoya, Japan: Published by Japanese Society for Root Research (JSRR), 2001. pp 520–521


[20] 
Funaba M, Ishibashi Y, Molla A H, Iwanami K, Iwaya-Inoue M. Influence of low/high temperature on water status in developing and maturing rice grains. Plant Prod, 2006, 9: 347–354


[21] 
Liu L-J(刘立军), Yuan L-M(袁莉民), Wang Z-Q(王志琴), Xu G-W(徐国伟), Chen Y(陈云). Preliminary studies on physiological reason and countermeasure of lodging in dry-cultivated rice. Chin J Rice Sci (中国水稻科学), 2002, 16(3): 225–230 (in Chinese with English abstract)


[22] 
 Cheng F-M(程方民), Jiang D-A(蒋德安), Wu P(吴平), Shi C-H(石春海). The dynamic change of starch synthesis enzymes during the grain filling stage and effects of temperature upon on it. Acta Agron Sin (作物学报), 2001, 27(2): 201–206 (in Chinese with English abstract)


[23] 
Cheng F-M(程方民), Zhong L-J(钟连进), Sun Z-X(孙宗修). Effect of temperature at grain filling stage on starch biosynthetic metabolism in developing rice grains of early-indica. Sci Agric Sin (中国农业科学), 2003, 36(5): 492–501 (in Chinese with English abstract)


[24] 
Zhong X-H(钟旭华), Huang N-R(黄农荣). Preliminary study on the relationship between rice grain chalkiness and root activity at grain-filling stage. Chin J Rice Sci (中国水稻科学), 2005, 19(5): 471–474 (in Chinese with English abstract)


[25] 
Dong M-H(董明辉), Sang D-Z(桑大志), Wang P(王朋), Zhang W-J(张文杰), Yang J-C(杨建昌). Difference in chalky characters of the grains at different positions within a rice panicle. Acta Agron Sin (作物学报), 2006, 32(1): 101–111 (in Chinese with English abstract)


[26] 
Li Y S, Wu L H, Lu X H, Zhao L M, Fan Q L, Zhang F S. Soil microbial biomass as affected by non-flooded plastic mulching cultivation in rice. Biol Fert Soils , 2006, 43: 107–111


[27] 
Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci, 1995, 35: 827–831


[28] 
Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul, 2001, 35: 81–91
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!