欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 940-944.doi: 10.3724/SP.J.1006.2010.00940

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花IF2群体构建及其在纤维品质遗传和杂种优势研究中的应用

孔广超1,2,秦利1,徐海明1,祝水金1,*   

  1. 1浙江大学农业与生物技术学院农学系,浙江杭州310029;2石河子大学农学院,新疆石河子832002
  • 收稿日期:2009-10-06 修回日期:2010-01-25 出版日期:2010-06-12 网络出版日期:2010-03-15
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2004GB117305)和农业部公益性行业(农业)科研专项经费项目(nyhyzx07-052) 资助。

Construction of IF2 Population and Its Application in Studies on Genetic Effects and Heterosis for Fiber Quality in Upland Cotton (G. hirsutum L.)

KONG Guang-Chao1,2, QIN Li1, XU Hai-Ming1,ZHU Shui-Jin1,*   

  1. 1Agronomy Department,College of Agriculture and biotechnology,Zhejiang University,Hangzhou 310029,China,2Agronomy Department,Shihezi University,Shihezi 832002,China
  • Received:2009-10-06 Revised:2010-01-25 Published:2010-06-12 Published online:2010-03-15

摘要:

以陆地棉重组自交系RIL为材料,采用RIL系间随机交配的方式构建了一个含有188个组合的IF2群体。对该群体的棉花纤维品质性状表现进行了评价,并采用A、D遗传模型对其纤维品质性状的遗传效应和杂种优势进行了分析。结果表明,陆地棉IF2群体中5个纤维品质性状均呈现良好的正态分布,且各性状的表型平均值大多与F1杂交种相近,具有明显的杂种优势。显性与环境的互作效应是控制棉花纤维品质遗传的主要因素,其次是基因的加性效应,环境因素对于棉花纤维品质的杂种优势表现巨大的影响,两个环境中预测到的杂种优势值具有明显的差异。IF2群体是棉花数量性状遗传和杂种优势预测的优良研究群体。

关键词: 棉花, IF2群体, 纤维品质, 杂种优势

Abstract:

Genetic analysis and heterosis prediction for fiber quality are very important in cotton breeding. An immotalized F2 (IF2) population with 188 combination F1 in upland cotton was developed by random mating among recombinant inbred lines (RIL) derived from a intraspeciifc hybridization between HS46 and MARCABUCAG8US-1-88, and its fiber quality traits were evaluated. Based on the IF2 population, we analyzed the genetic effects and heterosis of cotton fiber with the additive-dominance genetic model. The results showed that the values of all the five fiber quality traits, fiber length (FL), fiber uniformity (FU), fiber micronaire (FM), fiber elongation (FE) and fiber strength (FS), were distributed normally, and wider variations than those of its RIL population were found for the five fiber quality traits in the IF2 population. The genetic dissection and heterosis prediction analyses indicated that a significant heterosis was found in fiber quality traits. The interaction effect between additive and environment played an important role in cotton fiber quality, following by the additive effect. Their heterosis was affected greatly by the environment effects, and there were significant difference between two environments in the experiment. All these results indicate that the IF2 population is an ideal research population in genetic analysis and heterosis prediction for cotton fiber quality and other agronomic characters.

Key words: G.hirsutum L., Immotalized F2 population(IF2), Fiber quality, Heterosis

[1]Blaise D. Yield, boll distribution and fiber quality of hybred cotton (Gossypium hirsutum L.) as influenced by organic and modern methods of cultivation. J Agron Crop Sci, 2006, 192: 248-256
[2]Xing C-Z(邢朝柱), Jing S-R(靖深蓉), Xing Y-H(邢以华). Review and prospect on cotton heterosis utilization and study in China. Cotton Sci (棉花学报), 2007, 19(5): 337-345 (in Chinese with English abstract)
[3]Zhu J(朱军). Methods of prediction genotype value and heterosis for offspring of hybrids. J Biomath (生物数学学报), 1993, 8(1): 32-44 (in Chinese with English abstract)
[4]Yuan Y-L(袁有禄), Zhang T-Z(张天真), Guo W-Z(郭旺珍), Yu J, Kohel R J. Major-polygene effect analysis of super quality fiber properties in upland cotton (G. hirsutum L.). Acta Gent Sin (遗传学报), 2002, 29(9): 827-834 (in Chinese with English abstract)
[5]Sun J-L(孙君灵), Du X-M(杜雄明), Zhou Z-L(周忠丽), Pan Z-E(潘兆娥), Pang B-Y(庞保印). Analysis on heritability and heterosis of main traits of Bt transgenic cotton sGK9708 crossed with different types. Cotton Sci (中国棉花), 2003, 15(6): 323-327 (in Chinese)
[6]Sun J-L(孙君灵), Du X-M(杜雄明), Zhou Z-L(周忠丽), Pan Z-E(潘兆娥), Pang B-Y(庞保印). Analysis on heritability and heterosis of main traits of different population in upland cotton. Acta Agric Boreali-Sin (华北农学报), 2004, 19(1): 49-53 (in Chinese with English abstract)
[7]Xing C-Z(邢朝柱), Yu S-X(喻树迅), Guo L-P(郭立平), Ye Z-H(叶子弘), Wang H-L(王海林), Miao C-D(苗成朵), Zhao Y-L(赵云雷). Analysis for genetic effect and heterosis of insect resistant transgenic upland cotton crosses in different ecological environments. Sci Agric Sin (中国农业科学), 2007, 40(4): 1056-1063 (in Chinese with English abstract)
[8]Hua J P, Xu Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid
[J].Proc Natl Acad Sci USA
[9]Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that hehterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885-1895
[10]Wang B H, Wu Y T, Guo W Z, Zhu X F, Huang N T, Zhang T Z. QTL analysis and epistasis effects dissection of fiber qualities in an elite cotton hybrid grown in second generation
[J].Crop Sci
[11]Zhu J, Weir B S. Mixed model approaches for diallel analysis based on a bio-model
[J].Genet Res
[12]Luan Q-F(栾启福), Zhu S-J(祝水金). Introduction of a recombinant inbred line of upland cotton (G. hirsutum L.) HM188. Cotton Sci (棉花学报), 2003, 15(4): 252-253 (in Chinese with English abstract)
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!