作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1100-1107.doi: 10.3724/SP.J.1006.2010.01100
苏成付,赵团结,盖鈞镒*
SU Cheng-Fu,ZHAO Tuan-Jie,GAI Jun-Yi
摘要:
分子遗传和数量遗传的结合,发展了QTL定位研究。随着定位方法与软件的建立和完善,QTL定位的研究越来越多。准确定位的QTL可用于分子标记辅助选择和图位克隆,而假阳性QTL将误导定位信息的应用。本文研究迄今主要定位方法(软件)对于各种遗传模型数据的适用性。应用计算机模拟4类遗传模型不同的重组自交系群体(RIL),第一类只包含加性QTL;第二类包含加性和上位性互作QTL;第三类包含加性QTL和QTL与环境互作效应;第四类包含加性、上位性互作QTL和QTL与环境互作效应。每类按模拟QTL个数不同设两种情况,共分为8种数据模型(下称M-1~M-8)。选用WinQTLCart 2.5的复合区间作图(下称CIM)、多区间作图前进搜索(MIMF)、多区间作图回归前进选择(MIMR),IciMapping 2.0的完备复合区间作图(ICIM),MapQTL 5.0的多QTL模型(MQM)以及QTLnetwork 2.0的区间作图(NWIM)等6种程序对8种不同遗传模型的RIL进行QTL检测。结果表明,不同程序适用的遗传模型范围不同。CIM和MQM只适于检测第一类模型;MIMR、MIMF和ICIM只适于检测第一类和第二类模型;只有NWIM适于检测所有四类遗传模型;因而不同遗传模型数据的最适用检测程序不同。由于未知实际数据的遗传模型,应采用在复杂模型程序,如QTLnetwork 2.0,扫描基础上的多模型QTL定位策略,对所获模型用相应模型软件进行验证。
[1] Lander E S, Bostein D R. Mapping Mendelian factors underlying quantitative traits using RFLP linkage map. Genetics, 1989, 121: 185-189 [2] Basten C J, Weir B S, Zeng Z B. Zmap-a QTL cartographer, In: Smith C, Gavora J S, Benkel B, Chesnais J, Fairfull W, Gibson J P, Kennedy B W, Burnside E B eds. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software. The Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, Canada, 1994, Vol 22, pp 65-66 [3] Utz H F, Melchinger A E. PLABQTL: A program for composite interval mapping of QTL. J Agric Genomics, 1996 2: 1-5 [4] Manly K F, Cudmore J R, Meer J M. Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome, 2001, 12: 930-932 [5] Nelson J C. QGENE: Software for marker-based genomic analysis and breeding. Mol Breed, 1997, 3: 239-245 [6] Van Ooijen J W, Maliepaard C. MapQTL version 3.0: Software for the calculation of QTL positions on genetic maps. Abstract of Plant Genome IV Conference(http://www.intl-pag.org/4/abstracts/p316.html), San Diego, CA, 1996 [7] Lu Y Y, Liu B H. A new computer package for genomic research: PGRI (Plant Genome Research Initiative). Abstract of Plant Genome III Conference (http://www.intl-pag.org/3/abstracts/201pg3.html), San Diego, CA, 1995 [8] Wang D L, Zhu J, Li Z K, Paterson A H. User Manual for QTLMapper Version 1.6-A Computer Software for Mapping Quantitative Trait Loci (QTLs) with Main Effects, Epistatic Effects and QTL × Environment Interactions. Department of Agronomy, Zhejiang University, Hangzhou, China (http://ibi.zju.edu.cn/ software/qtlmapper/), 2003 [9] Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374 [10] Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527-1536 [11] Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J-723. QTLNetwork: Mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721 [12] Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu. edu/qtlcart/WQTLCart.htm), 2007 [13] Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374 [14] Van Ooijen J W, Kyazma B V. MapQTL 5, Software for the Mapping of Quantitative Trait Loci in Experimental Populations. Wageningen, the Netherlands, 2004 [15] Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 1203−1216 [16] Wang J-K(王建康). Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin (作物学报), 2009, 35(2): 239-245 (in Chinese with English abstract) [17] He X-H(何小红), Xu C-W(徐辰武), Kuai J-M(蒯建敏), Gu S-L(顾世梁), Li T(李韬). Principal factors affecting the power of detection and accuracy of QTL mapping. Acta Agron Sin (作物学报), 2001, 27(4): 469-475 (in Chinese with English abstract) [18] Su C F, Lu W G, Zhao T J, Gai J Y. Verification and fine-mapping of QTLs conferring days to flowering in soybean using residual heterozygous lines. Chin Sci Bull, 2010, 55(6): 499-508 |
[1] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[2] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[3] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[4] | 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108. |
[5] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[6] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[7] | 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353. |
[8] | 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677. |
[9] | 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19. |
[10] | 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61. |
[11] | 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146. |
[12] | 魏丽娟,刘瑞影,张莉,陈志友,杨鸿,霍强,李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合[J]. 作物学报, 2019, 45(6): 818-828. |
[13] | 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537. |
[14] | 张春宵,李淑芳,金峰学,刘文平,李万军,刘杰,李晓辉. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4): 508-521. |
[15] | 刘江宁,王楚鑫,张宏根,缪一栩,高海林,许作鹏,刘巧泉,汤述翥. 水稻黑条矮缩病抗性QTL定位[J]. 作物学报, 2019, 45(11): 1664-1671. |
|