欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1286-1295.doi: 10.3724/SP.J.1006.2010.01286

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用SRAP标记构建甘薯分子连锁图谱

李爱贤1,2,刘庆昌1,*,王庆美2,张立明2,翟红1,刘树震3   

  1. 1 中国农业大学农业部作物基因组学与遗传改良重点开放实验室 / 北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室,北京100193;2 山东省农业科学院作物研究所,山东济南250100;3 山东省济南市农业局,山东济南250021
  • 收稿日期:2010-01-28 修回日期:2010-04-20 出版日期:2010-08-12 网络出版日期:2010-05-20
  • 通讯作者: 刘庆昌, E-mail: liuqc@cau.edu.cn
  • 基金资助:
    本研究由国家高技术研究发展计划(863计划)项目(2006AA100107), 国家甘薯现代产业技术体系, 国家科技支撑计划项目(2006BAD01A06), 农业部引进国际先进农业科学技术计划(948计划)项目(2006-G21-02), 国家公益性行业(农业)科研专项(nyhyzx07-012-03)和山东省自然科学基金项目(Q2006D10)资助。

Establishment of Molecular Linkage Maps Using SRAP Markers in Sweet potato

LI Ai-Xian1,2,LIU Qing-chang1,*,WANG Qing-mei2,ZHANG Li-ming2,ZHAI Hong1,LIU Shu-Zhen3   

  1. 1 Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing 100193, China; 2 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3 Jinan Agricultural Bureau, Jinan 250021, China
  • Received:2010-01-28 Revised:2010-04-20 Published:2010-08-12 Published online:2010-05-20
  • Contact: LIU Qing-Chang,E-mail: liuqc@cau.edu.cn

摘要: 以高淀粉甘薯品种漯徐薯8号为母本,低淀粉甘薯品种郑薯20为父本,杂交得到的F1分离群体的240个单株,利用SRAP标记技术,共得到770个母本的多态性标记和523个父本的多态性标记,用JoinMap3.0软件和“双假测交”策略,分别构建了2个亲本的分子连锁图谱。其中漯徐薯8号的图谱包括由473个SRAP标记组成的81个连锁群,总图距为5 802.46 cM,标记间平均图距为10.16 cM;郑薯20的图谱包括由328个SRAP标记组成的66个连锁群,总图距为3 967.90 cM,标记间平均图距为12.02 cM。该高密度分子连锁图谱的构建,为甘薯分子标记辅助选择、基因定位及克隆研究奠定了基础。

关键词: 甘薯, 分子连锁图谱, SRAP标记

Abstract: Sweet potato [Ipomoea batatas (L.) Lam.] is an important vegetative reproduction crop. Despite its worldwide importance, molecular biology researches in sweet potato have lagged behind other crops due to its characteristics including polyploidy, outcrossing behavior and high heterozygosity. As a result, it is difficult to make a breakthrough for the improvement of sweet potato using conventional methods. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to establish molecular genetic linkage maps with F1 population consisting of 240 individuals derived from a cross of sweet potato cv. Luoxushu 8 (high starch content cultivar) × cv. Zhengshu 20 (low starch content cultivar). A total of 770 and 523 SRAP markers were generated, respectively, in Luoxushu 8 and Zhengshu 20. Using the software of JoinMap 3.0 and the ‘double pseudo testcross strategy’, a molecular linkage map containing 81 linkage groups was established with 473 SRAP markers in Luoxushu 8, and the map covered 5 802.46 cM with an average marker interval of 10.16 cM. In Zhengshu 20,the molecular linkage map containing 66 linkage groups was constructed using 328 SRAP markers, and the map covered 3 967.90 cM with an average marker interval of 12.02 cM. The results will provide a powerful tool to facilitate the introgression of desired traits into cultivars, gene localization and map-based cloning techniques, and greatly increase breeding efficiency through marker-assisted selection (MAS) techniques.

Key words: Sweet potato, Molecular linkage map, SRAP marker

[1]Grattapaglia D, Sederoff R R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics,1994, 137: 1121-1137
[2]Ukoskit K, Thompson P G, Watson J C E, Lawrence G W. Identifying a randomly amplified polymorphic DNA (RAPD) marker linked to a gene form root-knot nematode resistance in sweet potato.J Am Soc Hort Sci, 1997, 122: 818-821
[3]Thompson P G, Hong L L, Ukoskit K, Zhu Z. Genetic linkage of randomly amplified polymorphic DNA (RAPD) markers in sweet potato. J Am Soc Hort Sci, 1997, 122: 79-82
[4]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica
[J].Theor Appl Genet,
[5]Kriegner A, Cervantes J C, Burg K, Mwanga R O M, Zhang D P. A genetic linkage map of sweetpotato
[Ipomoea batatas (L.) Lam.] based on AFLP markers. Mol Breed, 2003, 11: 169-185
[6]Cervantes-Flores J C, Craig Y G, Kriegner A, Kenneth P V, Faulk M A, Mwanga R O M, Sosinski B R. Development of a genetic linkage map and identification of homologous linkage groups in sweet potato using multiple-dose AFLP markers
[J].Mol Breed
[7]Wu J(吴洁), Tan W-F(谭文芳), He J-R(何俊蓉), Pu Z-G(蒲志刚), Wang D-Y(王大一), Zhang Z-S(张正圣), Zhan F-F(詹付凤), Yan W-Z(阎文昭). Construct on of SRAP linkage map and QTL mapping for starch content in sweet potato. Mol Plant Breed (分子植物育种), 2005, 3(6): 841-845 (in Chinese with English abstract)
[8]Jie Q(揭琴). Construction of a Genetic Lingkage Map and Development of AFLP Markers Linked to Stem Nematode Resistance Gene in Sweet potato
[Ipomoea batatas (L.) Lam.]. PhDDissertation of China Agricultural University, 2008 (in Chinese with English abstract)
[9]Bassam B J, Caetano-Anolles G, Gresshoff P M. Fast and sensitive silver-staining of DNA in polyacry-lamide gels
[J].Anal Biochem
[10]Jones A. Theoretical segregation ratios of qualitatively inherited characters for hexaploid sweet potato (Ipomoea batatas). USDA Tech Bull, 1967, p 1368
[11]Jin M-Y(金梦阳), Liu L-Z(刘列钊), Fu F-Y(付福友), Zhang Z-S(张正圣), Zhang X-K(张学昆), Li J-N(李加纳). Construction of a genetic linkage map in Brassica napus based on SRAP, SSR, AFLP and TRAP. Mol Plant Breed (分子植物育种), 2006, 4(4): 520-526 (in Chinese with English abstract)
[12]Ripol M I, Churchill G A, Da Silva J A, Sorrells M. Statistical aspects of genetic mapping in autopolyploids. Gene, 1999, 235: 31-41
[13]Lyttle T W. Segregation distorters
[J].Annu Rev Genet
[14]Xu S J, Singh R J, Hymowitz T. Establishment of a cytogenetic map soybean: progress and prospective. Soybean Genet Newslett, 1997, 24: 121-122
[15]Knox M R, Ellis T H N. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations. Genetics, 2002, 162: 861-873
[1] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[2] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[3] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[4] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[5] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[6] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[7] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[8] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[9] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[10] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[11] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[12] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[13] 史文卿,张彬彬,柳洪鹃,赵庆鑫,史春余,王新建,司成成. 甘薯块根形成和膨大对土壤紧实度的响应机制及与产量的关系[J]. 作物学报, 2019, 45(5): 755-763.
[14] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[15] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!