欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1752-1759.doi: 10.3724/SP.J.1006.2010.01752

• 耕作栽培·生理生化 • 上一篇    下一篇

EdHP1(氢离子焦磷酸化酶)基因烟草促进钾离子吸收的生理机制

金维环1,2,董建辉2,陈明2,*,陈耀锋1,李连城2,徐兆师2,马有志2,*   

  1. 1 西北农林科技大学农学院,陕西杨凌 7121002 国家农作物基因资源与基因改良重大科学工程 / 农业部作物遗传育种重点开放实验室,中国农业科学院作物科学研究所,北京 100081
  • 收稿日期:2010-03-10 修回日期:2010-05-23 出版日期:2010-10-12 网络出版日期:2010-05-23
  • 通讯作者: 陈明, E-mail: chenming@mail.caas.net.cn; 马有志, E-mail: mayouzhi@yahoo.com.cn
  • 基金资助:
    本研究由国家高技术研究发展计划(863计划)项目(2008AA10Z124和2006AA10A111)和国家自然科学基金项目(30700508)资助。

Physiological Mechanisms of Enhanced Uptake of Potassium Nutrition in EdHP1 (H+-pyrophosphatase) Transgenic Tobacco (Nicotiana tabacum)

JIN  Wei-Huan12,DONG  Jian-Hui2,CHEN  Ming2*,CHEN  Yao-Feng1,LI  Lian-Cheng2,XU  Zhao-Shi2,MA  You-Zhi2*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Genetics and Breeding of Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2010-03-10 Revised:2010-05-23 Published:2010-10-12 Published online:2010-05-23
  • Contact: CHEN Ming,E-mail:chenming@mail.caas.net.cn;MA You-Zhi,E-mail:mayouzhi@yahoo.com.cn

摘要: 钾是植物生长必须的重要矿质元素,提高作物对钾的吸收是提高作物产量的重要途径。本研究以前期遗传转化披碱草EdHP1(H+-pyrophosphatase)基因的烟草为材料,在低钾处理条件下比较了转基因烟草和野生型烟草的生理特性。结果显示,在低钾条件下,野生型烟草体内K+积累量只相当于转基因烟草的62.9%。野生型烟草的总根长、总根表面积、总根体积明显低于转基因烟草(P<0.05),分别为转基因烟草的72.9%、68.1%和60.6%。在不同直径根系(0.5~2.0、2.5~4.5、>4.5 mm 分别为细根、中等根和粗根)中,细根发育差异最大,野生型烟草为转基因烟草的72.9%。低钾条件下,转基因烟草根系活力是野生型烟草的1.2倍,野生型烟草根系焦磷酸化酶活力相当于转基因烟草的46.4%,根部游离IAA含量相当于转基因烟草的66.2%。通过非损伤方法测定根部 K+和 H+流速结果显示,在根系表面积相似情况下,低钾条件下野生型烟草外排钾速率显著高于转基因烟草,而氢离子外排速率显著低于转基因烟草。综上所述,发达的根系和较高的K+转运体活性综合作用显著提高了转基因烟草根部对K+的吸收。

关键词: 烟草, K+吸收, 氢离子焦磷酸化酶, 根系

Abstract: Potassium is necessary for plant growth and enhancing uptake of potassium is important to improve crop yield. In this study, previous transgenic tobacco transformed with Elymus dahuricus EdHP1 (H+-pyrophosphatase) was used to compare the physiological characteristics between transgenic tobacco and wild type tobacco. The results showed that under starvation of potassium, the content of K+ accumulated in wild-type tobacco was 62.9% of that in transgenic tobacco, and the total root length, total root surface area, and total root volume in wild type tobacco were observably lower than those in transgenic tobacco (P<0.05), with the decrease of 72.9%, 68.1%, and 60.6%, respectively. In addition, in different root systems of fine roots (diameter=0.5–2.0 mm), middle roots (diameter= 2.5–4.0 mm) and coarse roots (diameter>4.5 mm), fine roots were biggest different between transgenic and wild type tobacco which fine roots were 72.9% of those in transgenic tobacco. The activity of root system in transgenic tobacco was 1.2 times as high as that in wild type tobacco. The activity of H+-pyrophosphatase and the content of free IAA in wide-type tobacco were only 46.4% and 66.2% of those in transgenic tobacco respectively. The results of non-destructive ion flux measurement showed that under starvation of potassium the efflux of K+ from wild type tobacco was observably higher than that from transgenic tobacco, but inverse result was found efflux of H+ with similarly total root surface area of transgenic tobacco and wild type tobacco. Two physiological mechanisms containing well-developed root system and higher activity of K+ transporters enhanced uptake of potassium in EdHP1 transgenic tobacco plants.

Key words: Tobacco, Uptake of potassium, H+-pyrophosphatase, Root system

[1]Maathuis F, Verlin D, Smith F A, Sanders D, Fernandez J A, Walker N A. The physiological relevance of Na+-coupled K+-transport. Plant Physiol, 1996, 112: 1609-1616
[2]Véry A A, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol, 2003, 54: 575-603
[3]Li T-X(李廷轩), Ma G-R(马国瑞). Physiological and morphological characteristics of root in grain amaranth genotypes enrichment in potassium. Acta Agron Sin (作物学报), 2004, 30(11): 1145-1151 (in Chinese with English abstract)
[4]Drew M C. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system and the shoot in barley. New Phytol, 1975, 75: 479-490
[5]Chen J-X(陈际型). Effect of K+ nutrition on rice root growth and nutrient uptake. Acta Pedol Sin (土壤学报), 1997, 34(2): 182-188(in Chinese with English abstract)
[6]Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA, 2004, 101: 8827-8832
[7]Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signalling. Plant Physiol, 2004, 136: 2556-2576
[8]Mäser P, Thomine S, Schroeder J I, Ward J M, Hirschi K, Sze H, Talke I N, Amtmann A, Maathuis F J, Sanders D, Harper J F, Tchieu J, Gribskov M, Persans M W, Salt D E, Kim S A, Guerinot M L. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol, 2001, 126: 1646-1667
[9]Wu P(吴平), Yin L-P(印莉萍), Zhang L-P(张立平). Molecular Physiology of Plant Nutrition (植物营养分子生理学). Beijing: Science Press, 2001. pp 163-211 (in Chinese)
[10]Nakanishi Y, Matsuda N, Aizawa K, Kashiyama T, Yamamoto K, Mimura T, Ikeda M, Maeshima M. Molecular cloning and sequencing of the cDNA for vacuolar H+-pyrophosphatase from Chara corallina. Biochim Biophys Acta, 1999, 1418: 245-250
[11]Wang Y-Z(王延枝). Pyrophosphatase in plant vacuoles. Plant Physiol Commun (植物生理学通讯), 1990, (4): 73-76 (in Chinese)
[12]Bao A-K(包爱科), Zhang J-L(张金林), Guo Z-G(郭正刚), Wang S-M(王锁民). Tonoplast H+-pyrophosphatase involved in plant salt tolerance. Plant Physiol Commun (植物生理学通讯), 2006, 42(4): 777-778 (in Chinese)
[13]Guo S L, Yin H B, Zhang X, Zhao F Y, Li P H, Chen S H, Zhao Y X, Zhang H. Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol, 2006, 60: 41-50
[14]Long A R, Williams L E, Nelson S J, Hall J L. Localization of membrane pyrophosphatase activity in ricinus communis seedlings. J Plant Physiol, 1995, 146: 629-638
[15]Robinson D G, Haschke H P, Hinz G, Hoh B, Maeshima M, Marty F. Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Planta, 1996, 198: 95-103
[16]Davies J M, Poole R J, Rca P A, Sanders D. Potassium energized directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sci USA, 1992, 89: 11701-11705
[17]Obermeyer G, Sommer A, Bentrup F W. Potassium and voltage dependence of the inorganic pyrophosphatase of intact vacuoles from Chenopodium rubrurn. Biochim Biophys Acta, 1996, 1284: 203-212
[18]Dong J-H(董建辉), Chen M(陈明), Xu Z-S(徐兆师), Zhang X-K(张晓科), Li L-C(李连城), Ma Y-Z(马有志). Isolation and functional analyses of a H+-pyrophosphatase gene, EdHP1, from pasture (Elymus dahuricus). J Triticeae Crops (麦类作物学报), 2008, 28(3): 364-371 (in Chinese with English abstract)
[19]Sun J, Chen S L, Dai S X, Wang R G, Li N Y, Shen X, Zhou X Y, Lu C F, Zheng X J, Hu Z M, Zhang Z K, Song J, Xu Y. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol, 2009, 149: 1141-1153
[20]Wang R-X(王瑞新), Han F-G(韩富根). Chemical Quality Analysis of Tobacco (烟草化学品质分析法). Zhengzhou: Henan Science and Technology Press, 1998. pp 102-105 (in Chinese)
[21]Kang H M, Saltveit M E. Reduced chilling tolerance in elongating cucumber seedling radicals is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity. Physiol Plant, 2002, 115: 244-250
[22]Wang Y Z, Sze H. Similarities and differences between the tonoplast-type and mitochondrial H+-ATPase of oat roots. J Biol Chem, 1985, 260: 10434-10443
[23]Shanghai Institute of Plant Physiology and Ecology. Modern Laboratory Manual of Plant Physiology (现代植物生理学实验指南). Beijing: Science Press, 1999. pp 66-67 (in Chinese)
[24]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254
[25]He Z-P(何仲佩). Experimental Instruction of Crop Chemical Control (农作物化学控制实验指导). Beijing: Beijing Agricultural University Press, 1993. pp 60-68 (in Chinese)
[26]Graham R D, Gregorio G. Breeding for nutritional characteristic in cereals. Novartis Found Symp, 2001, 236: 205-214
[27]Sullivan W M, Jiang Z C, Hull R J. Root morphology and its relationship with nitrate uptake in Kentucky bluegrass. Crop Sci, 2000, 40: 765-772
[28]Rouquié D, Tournaire-Roux C, Szponarski W, Rossignol M, Doumas P. Cloning of the V-ATPase subunit G in plant: functional expression and sub-cellular localization. FEBS Lett, 1998, 437: 287-292
[29]Zbu J K. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol, 2003, 6: 441-445
[30]Drozdowicz Y M, Rea P A. Vacuolar H+-pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci, 2001, 6: 206-211
[31]Davies J M, Poole R J, Rea P A, Sanders D. Potassium transport into plant vacuoles energized directly by a proton—pumping inorganic pyrophosphatase. Proc Natl Acad Sci USA, 1992, 89:11701-11705
[32]Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett M J. Dissecting Arabidopsis lateral root development. Trends Plant Sci, 2003, 8: 165-170
[33]Ashley M K, Grant M, Grabov A. Plant responses to potassium deficiency: a role for potassium transport proteins. J Exp Bot, 2006, 57: 425-436
[34]López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol, 2003, 6: 280-287
[35]Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J, 2004, 40: 523-535
[36]Li J S, Yang H B, Peer W A, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards E L, Krizek B, Murphy A S, Gilroy S, Gaxiola R. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science, 2005, 310: 121-125
[37]Gaxiola R A, Rao R I, Sherman A, Grisafi P, Alper S L, Fink G R. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1 can function in cation detoxification in yeast. Proc Nat Acad Sci USA, 1999, 96: 1480-1485
[38]Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463-499
[39]Newman E I, Andrews R E. Uptake of phosphorus and potassium in relation to root growth and root density. Plant Soil, 1973, 38: 49-69
[1] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[2] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[3] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727.
[4] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[5] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[6] 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877.
[7] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[8] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[9] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[10] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响[J]. 作物学报, 2020, 46(10): 1605-1616.
[11] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[12] 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101.
[13] 冯珺珩,黄金凤,刘天奇,曹凑贵,李成芳. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响[J]. 作物学报, 2019, 45(8): 1250-1259.
[14] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[15] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!