作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1605-1609.doi: 10.3724/SP.J.1006.2010.01605
王爱云1,2,庄洪涛2,3,**,张增艳2,*,张学文3,杜丽璞2,叶兴国2
WANG Ai-Yun1,2, ZHUANG Hong-Tao2,3,**,ZHANG Zeng-Yan2,*,ZHANG Xue-Wen3,DU Li-Pu2,YE Xing-Guo2
摘要: 以玉米B73基因组DNA为模板, 通过特异PCR扩增, 克隆出玉米启动子ZmPR4序列。序列分析表明, 该启动子与AJ969166序列同源性为100%。构建了ZmPR4或玉米泛素基因(Ubiquitin)启动子控制的报告基因GUS的表达载体。通过基因枪介导法转化小麦幼胚愈伤组织。瞬间表达实验表明, 在小麦幼胚愈伤组织中, 玉米ZmPR4启动子的本底表达活性明显比Ubi启动子的低, 但经纹枯病菌诱导后, ZmPR4 启动子控制的GUS基因的表达明显增强。PCR检测结果证实ZmPR4 启动子在小麦愈伤组织中具有表达活性, 能够驱动GUS基因的表达。因此, 玉米ZmPR4启动子在小麦抗病基因工程育种中具有潜在的应用价值。
[1] Chen Y-X(陈延熙), Tang W-H(唐文华), Zhang D-H(张敦华), Jian X-Y(简小鹰). A preliminary study on etiology of sharp eyespot of wheat in China. J Plant Prot (植物保护学报), 1986, 13(1): 39-44 (in Chinese with English abstract) [2] Shi J-R(史建荣), Wang Y-Z(王裕中), Shen S-W(沈素文), Chen H-G(陈怀谷).Pathogenicity of Rhizoctonia cerealis to wheat in Jiangsu province. Jiangsu J Agric Sci (江苏农业学报), 1997, 13(3): 188-190 (in Chinese with English abstract) [3] Wang Y-Z(王裕中). Occurrence of wheat sharp eyespot and its controlling. Plant Prot Technol Extension (植保技术与推广), 2001, 21(8): 39-41 (in Chinese) [4] Mitsuhara I, Matsufuru H, Ohshima M, Kaku H, Nakajima Y, Murai N, Natori S, Ohashi Y. Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal patho- gens in transgenic tobacco [J].Mol Plant-Microbe Interact [5] Osusky M, Zhou G, Osuska L, Hancock R E, Kay W W, Misra A. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens [J].Nat Biotech [6] Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H. Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice [J].FEBS Lett [7] Li Q, Lawrence C B, Xing H Y, Babbitt R A, Bass W T, Maiti I B, Everett N P. Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta, 2001, 212: 635-639 [8] Carmona, M J, Molina A, Fernández, J A, López-Fando J J, García-Olmedo F. Expression of the a-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens [J].Plant J [9] Mourgues F, Brisset M N, Chevreau E. Strategies to improve plant resistance to bacterial diseases through genetic engineering [J].Trends Biotech [10] Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, Martinez del Pozo A, Messeguer J, San Segundo B. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea [J].Plant Mol Biol [11] Iwai T, Kaku H, Honkura R, Nakamura S, Ochiai H, Sasaki T, Ohashi Y. Enhanced resistance to seedtransmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall- bound thionin [J].Mol Plant-Microbe Interact [12] Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I. Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice [J].Theor Appl Genet [13] Jia S-R(贾士荣). Environment and food biosafety assessment of trangenic plants. Adv Bioeng (生物工程进展), 1997, 17(6): 37-42 (in Chinese with English abstract) [14] Morris S H, Adley C C. Irish public perceptions and attitudes to modern biotechnology: an overview with a focus on GM foods [J].Trends Biotechnol [15] Simth N. Seeds of opportunity an assessment of the benefits, safety and oversight of plant genomics and agricultural biotechnology. Biotechnology Law Report. August 2000, 19(4): 449-536. [16] Moreno A B, Peñas G, Rufat M, Bravo M J, Estopà M, Messeguer J, Segundo B S. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice [J].Mol Plant- Microbe Interact [17] Jefferson R A. Assaying chimeric genes in plants: the GUS gene fusion system [J].Plant Mol Biol Rep |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[4] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[5] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[6] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[7] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[8] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[9] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[10] | 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183. |
[11] | 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862. |
[12] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
[13] | 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861. |
[14] | 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213. |
[15] | 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594. |
|