欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 119-126.doi: 10.3724/SP.J.1006.2011.00119

• 耕作栽培·生理生化 • 上一篇    下一篇

空间环境诱变小麦叶绿素缺失突变体的主要农艺性状和光合特性

赵洪兵,郭会君,赵林姝,古佳玉,赵世荣,李军辉,刘录祥*   

  1. 中国农业科学院作物科学研究所 / 国家农作物基因资源与基因改良重大科学工程 / 国家农作物航天诱变技术改良中心, 北京100081
  • 收稿日期:2010-04-23 修回日期:2010-06-23 出版日期:2011-01-12 网络出版日期:2010-11-16
  • 通讯作者: 刘录祥,E-mail:luxiang@263.net.cn,Tel:010-62122719
  • 基金资助:

    本研究由国家航天育种工程(发改高技[2003]138号), 国家高技术研究发展计划(863计划)项目(2007AA100102), 国家科技支撑计划项目(2008BAD97B01, 2009BAA24B05), 农业部农业公益性行业科研专项(200803034)和国际原子能机构项目(CRP14195, CPR5017)资助。

Agronomic Traits and Photosynthetic Characteristics of Chlorophyll-Deficient Wheat Mutant Induced by Spaceflight Environment

ZHAO Hong-Bing,GUO Hui-Jun,ZHAO Lin-Shu,GU Jia-Yu,ZHAO Shi-Rong,LI Jun-Hui,LIU Lu-Xiang*   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/ National Center of Space Mutagenesis for Crop Improvement, Beijing 100081, China
  • Received:2010-04-23 Revised:2010-06-23 Published:2011-01-12 Published online:2010-11-16
  • Contact: LIU Lu-Xiang,E-mail:luxiang@263.net.cn,Tel:010-62122719

摘要: 叶绿素缺失突变体对于研究植物光合作用机制, 揭示叶绿素生物合成与降解途径, 发掘鉴定光合作用相关新基因以及了解基因间的相互作用有重要意义。空间诱变创制的小麦叶绿素缺失突变体Mt135的叶色表现为完全白化、条纹和绿3种类型, 其中完全白化株叶片完全白化, 于苗期死亡; 条纹株叶片为绿白相间的条纹, 能够正常成穗结实, 但其株高、穗长、株粒数、株粒重、千粒重都显著低于原始亲本, 生育期比原始亲本延长5~7 d; 绿株与原始亲本没有显著差异。初步遗传分析表明, Mt135是一个由核质基因共同作用的突变材料。对突变体及其原始亲本叶绿素荧光动力学参数分析表明, 当光照强度为110 μmol m-2 s-1时, 条纹株绿色组织光系统II的最大量子产量与原始亲本无显著差异, 光系统II的潜在活性显著低于原始亲本, 而光化学猝灭系数、非光化学猝灭系数、实际量子产量、调节性能量耗散的量子产量、非调节性能量耗散的量子产量在不同的生育期间变化不同。另外, 不同的光照强度下, 条纹株绿色组织的电子传递速率、光化学猝灭系数、实际量子产量的变化也不相同。条纹株白色组织和完全白化株则完全失去光合能力。上述结果证实, 小麦叶绿素缺失突变体Mt135的光合作用受到很大的影响, 光合特性发生了改变, 较高的光照强度在拔节期对突变体影响较大, 抽穗期影响相对较小。条纹株光合特性的改变与其株高、穗长和产量相关性状显著降低的结果相互印证。

关键词: 小麦, 空间诱变, 叶绿素缺失突变体, 农艺性状, 叶绿素荧光动力学参数

Abstract: Chlorophyll deficiency mutants are ideal materials to study photosynthetic mechanism, pathways of chlorophyll biosynthesis and degradation, and genes related to photosynthesis. The chlorophyll-deficient wheat (Triticum aestivum L.) mutant Mt135, induced by space mutagenesis, was investigated on main agronomic traits and photosynthesis characteristics with a comparison to its wild type. The leaf color of the Mt135 showed albino, stripe, and green phenotypes. The albino plants with entire albino leaves died at seedling stage, while plants with green-and-white striped leaves usually matured 5–7 d later than the wild type, and the plant height, spike length, grains and grain weight per plant, and 1000-grain weight were lower. The green plants were not significantly different from the wild type. Preliminary genetic analysis showed that the inheritance model of Mt135 was nucleo-cytoplasmic interaction. When exposed to photosynthetic active radiation (PAR) of 110 μmol m-2 s-1, the green tissue of striped plants (S-G) and the wild plant had no significant difference on the value of maximum photosystem II quantum yield, but the potential activity of photosystem II was significantly lower in the S-G plants than in the wild plant. The changes of the photochemical quenching, non-photochemical quenching, effective quantum yield, regulated non-photochemical energy dissipation, and non-regulated energy dissipation were different at various growth stages. In addition, the differences of the electron transport rate, photochemical quenching, and effective quantum yield between S-G plant and wild plant varied under different PAR conditions. The white tissue of striped plant and the albino plant completely lose the photosynthetic function. As a result, the photosynthesis of Mt135 was greatly restricted. High photosynthetic active radiation had tremendous impact on the mutant at elongation stage and relatively weak impact at heading stage. The changes of photosynthetic function of striped plant are in accordance with the reduction of their plant height, spike length, and yield related traits.

Key words: Triticum aestivum L., Space mutagenesis, Chlorophyll-deficient mutant, Agronomic traits, Chlorophyll fluorescence kinetic parameters

[1]Yu B, Benning C. Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J, 2003, 36: 762–770
[2]Olga S, Alexey A, Natalia R. An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis. Mol Gen Genomics, 2005, 273: 311–318
[3]Jung K H, Hur J, Ryu C H. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472
[4]Wu Z M, Zhang X, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[5]Lee S, Jung K H, An G. Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol Biol, 2004, 54: 755–765
[6]Abe T, Matsuyama T, Sekido S, Yamaguchi I, Yoshida S, Kameya T. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. J Radiat Res, 2002, 43: 157–161
[7]Konishi T. An incomplete dominant chlorophyll mutation on chromosome 1. Barley Genet Newsl, 1972, 2: 43–45
[8]Cang J(苍晶), Yu L-F(于龙凤), Wang Y-Y(王豫颖), Zhang D(张达), Hao Z-B(郝再斌), Hu B-Z(胡宝忠). Agronomic and biochemical characters of chlorophyll deficient mutant HS 821 of soybean. J Nucl Agric Sci (核农学报), 2007, 21(1): 9–12 (in Chinese with English abstract)
[9]Asakure Y, Hirohashi T, Kikuchi S. Maize mutant lacking chloroplast FtsY exhibit pleiotropic defects in the biogenesis of thylakoid membranes. Plant Cell, 2004, 16: 201–214
[10]Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic deflects of sodium azide in rice. Crop Sci, 1980, 20: 663–668
[11]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87–92
[12]Fambrini M, Castagna A, Vecchia F D. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PSII activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79–89
[13]Gong H-B(龚红兵), Chen L-M(陈亮明), Diao L-P(刁立平), Sheng S-L(盛生兰), Lin T-Z(林添资), Yang T-N(杨图南), Zhang R-X(张荣铣), Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Dai X-B(戴新宾), Lu W(陆巍), Xu X-M(许晓明). Genetic analysis of chlorophyll-b less mutant in rice and its related characteristics. Sci Agric Sin (中国农业科学), 2001, 34(6): 686–689 (in Chinese with English abstract)
[14]Tan X-X(谭新星), Xu D-Q(许大全), Tang Z-S(汤泽生). Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient mutant of barley. Acta Phytophysiol Sin (植物生理学报), 1996, 22(1): 51–57 (in Chinese with English abstract)
[15]Liu L-X(刘录祥), Guo H-J(郭会君), Zhao L-S(赵林姝), Li J-H(李军辉), Gu J-Y(古佳玉), Zhao S-R(赵世荣), Wang J(王晶). Current status and outlook perspectives of induced mutations for plant improvement. J Nucl Agric Sci (核农学报), 2009, 23(6): 1001–1007 (in Chinese with English abstract)
[16]Guo H-J(郭会君), Jin W-K(靳文奎), Zhao L-S(赵林姝), Zhao S-R(赵世荣), Zhao H-B(赵洪兵), Liu L-X(刘录祥). Mutagenic effects of different factors in spaceflight environment of Shijian-8 satellite in wheat. Acta Agron Sin (作物学报), 2010, 36(5): 764–770 (in Chinese with English abstract)
[17]Cao L(曹莉), Wang H(王辉), Sun D-J(孙道杰), Feng Y(冯毅), Li X-J(李学军), Min D-H(闵东红). Characteristics of agronomic traits and cytogenetic of a spontaneous aurea mutation from wheat variety Xinong 1718. J Triticeae Crops (麦类作物学报), 2009, 29(5): 777–781 (in Chinese with English abstract)
[18]Yu Q-B(余庆波), Jiang H(江华), Mi H-L(米华玲), Zhou G-Y(周根余), Yang Z-N(杨仲南). The physiological character and molecular mapping in rice albio21 mutant. J Shanghai Norm Univ (Nat Sci) (上海师范大学学报?自然科学版), 2005, 34(1): 70–75 (in Chinese with English abstract)
[19]Zhang L-K(张力科), Li Z-B(李志彬), Liu H-Y(刘海燕), Li R-H(李如海), Chen M-Y(陈满元), Chen A-G(陈爱国), Qian Y-L(钱益亮), Hua Z-T(华泽田), Gao Y-M(高用明), Zhu L-H(朱苓华), Li Z-K(黎志康). Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin (中国农业科学), 2010, 43(2): 223–229 (in Chinese with English abstract)
[20]Li N(李娜), Chu H-W(储黄伟), Wen T-Q(文铁桥), Zhang D-B(张大兵). Genetic analysis and mapping of the rice white midrib mutant Oswm. Acta Agric Shanghai (上海农业学报), 2007, 23(1): 1–4 (in Chinese with English abstract)
[21]Cao L(曹莉), Wang H(王辉), Sun D-J(孙道杰), Feng Y(冯毅), Li X-J(李学军), Min D-H(闵东红). Genetic analysis of a novel aurea mutant in wheat. Hereditas (遗传), 2008, 30(12): 1603–1607 (in Chinese with English abstract)
[22]Ma G-R(马国荣), Liu Y-B(刘佑斌), Gai J-Y(盖钧镒). Discovery of a cytoplasmically inherited virescent mutant of soybean. Acta Agron Sin (作物学报), 1994, 20(3): 334–338 (in Chinese with English abstract)
[23]Cao L(曹莉), Wang H(王辉), Sun D-J(孙道杰), Feng Y(冯毅). Photosynthesis and chlorophyll fluorescence characters of Xantha wheat mutants. Acta Bot Boreal-Occident Sin (西北植物学报), 2006, 26(10): 2083–2087 (in Chinese with English abstract)
[24]Huang X-Q(黄晓群), Wang P-R(王平荣), Zhao X-H(赵海新), Deng X-J(邓晓建). Genetic analysis and molecular mapping of a novel chlorophyll-deficit mutant gene in rice. Chin Rice Sci (中国水稻科学), 2007, 21(4): 355–359 (in Chinese with English abstract)
[25]Lü D-H(吕典华), Zong X-F(宗学凤), Wang S-G(王三根), Ling Y-H(凌英华), Sang X-C(桑贤春), He G-H(何光华). Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin (作物学报), 2009, 35(12): 2304–2308 (in Chinese with English abstract)
[26]Zhao Q(赵琦), Tang Q-Q(唐崇钦), Kuang T-Y(匡廷云). Photosynthetic characteristics of an albino mutant (zb/zb) in maize. Acta Bot Sin (植物学报), 1997, 39(11): 1082–1084 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!