欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 559-562.doi: 10.3724/SP.J.1006.2011.00559

• 研究简报 • 上一篇    下一篇

大豆重组自交家系群体动态株高及其相对生长速率与产量的关系

黄中文1,王伟1,徐新娟1,李金英2,卢为国2,*   

  1. 1 河南科技学院农学系,河南新乡453003;2 河南省农科院经作所,河南郑州450002
  • 收稿日期:2010-08-09 修回日期:2010-12-09 出版日期:2011-03-12 网络出版日期:2011-01-17
  • 通讯作者: 卢为国, E-mail: 123bean@163.com
  • 基金资助:

    本研究由河南科技学院博士启动基金(2008005),国家重点基础研究发展计划(973计划)项目(2009CB118404)和国家科技支撑项目(2006BAD01A04)资助。

Relationship of Dynamic Plant Height and Its Relative Growth Rate with Yield Using Recombinant Inbred Lines of Soybean

HUANG Zhong-Wen1,WANG Wei1,XU Xin-Juan1,LI Jin-Ying2,LU Wei-Guo2,*   

  1. 1 Department of Agronomy, Henan Institute of Science and Technology, Xinxiang 453003, China; 2 Institute of Industrial Crops, Hennan Academy of Agricultural Sciences, Zhengzhou 450002, China
  • Received:2010-08-09 Revised:2010-12-09 Published:2011-03-12 Published online:2011-01-17
  • Contact: 卢为国, E-mail: 123bean@163.com

摘要: 提高产量潜力始终是大豆育种的重要目标,研究产量相关性状是解析产量重要途径之一。大豆株高影响产量,但存在不确定性。本研究利用一套包含212个家系的大豆重组自交家系(RIL),于2008—2009年连续2年测定各家系动态株高,并计算相对生长速率,研究与产量的关系,以期为大豆产量改良中对株高的选择提供参考信息。试验结果表明,(1) 产量和株高变幅分别为1 000~5 000 kg hm–1和38~103 cm,说明样本有较大代表性。(2) 出苗后20 d的株高即与产量具极显著正相关,随生长进程,相关系数逐渐增大,至株高生长停止达到最大。株高生长速率前期与产量呈显著正相关,后期与产量具负相关,说明后期过快增加株高不利于产量。(3) 在试验范围内,株高与产量呈负指数回归关系,随株高增加,产量逐渐增加,当株高为80 cm时,随株高增加,产量的增加逐渐缓慢。发现株高的变异在70~90 cm之间时,均能获得4 000 kg hm–1产量。本文还简要讨论了重组自交家系用于表型分析的优势,以及在大豆产量育种中如何对株高进行选择。

关键词: 大豆, 动态株高, 相对生长速率, 产量, 相关

Abstract: Selection for increasing yield potential is consistantlythe main goal of soybean breeding. Plant height influences yield with uncertainty in soybean. A population of 212recombinant inbred lines (RIL) was used to analyze the correlation of dynamic plant height and its relative growth rate with yield across two-year field experiments. The results were as followed. (1) The range of yield and plant height was 1 000–5 000 kg ha–1, 38–128 cm respectively, which indicated the sample in the study had a good representativeness. Significant differences between plant height and its relative growth rate at the same developmental stages were observed among the RILs. (2) Yield was significantly and positively correlated with plant height at 20 days after emergence, and the correlation increased with the growing stages and the highest correlation occurred when plant height culminated. Yield was positively correlated with relative growth rate in plant height at earlier growth stages and negatively correlated at later stages, indicating that faster growth in plant height at later stage would not be beneficial to higher yield. (3) A negative exponential regression mode was observed in the relationship between yield and plant height. Yield increased steeply when plant height was less than 80 cm and this trend would slow down when plant height was over 80 cm. We found yields reached 4 000 kg ha–1 when plant heights were 70–90 cm. The merits and demerits of phenotypic analysis using RIL and how to select plant height in soybean breeding were discussed.

Key words: Soybean, Dynamic plant height, Relative growth rate, Yield, Correlation

[1]Specht J E, Hume D J, Kumudini S V. Soybean yield potential: a genetic and physiological perspective. Crop Sci, 1999, 39: 1560–1570
[2]Hao X-X(郝欣先), Jiang H-L(蒋惠兰), Li X-H(李星华), Ding F-W(丁发武), Wang J-L(王金龙), Peng J-Q(彭继青). The analysis of characters of high yield varieties of summer soybean. Soybean Sci (大豆科学), 1987, 6(1): 11–19 (in Chinese with English abstract)
[3]Chen H-H(陈恒鹤), Li N(李楠). Relative genetic advance and combining ability of plant type characters in soybeans. Soybean Sci (大豆科学), 1984, 3(4): 268–280 (in Chinese with English abstract)
[4]Wang J-L(王金陵). Soybean (大豆). Harbin: Heilongjiang Science and Technology Press, 1982. p 42 (in Chinese)
[5]Wilcox J R, Tuneo S. Interrelationships among height, lodging and yield in determinate and indeterminate soybeans. Euphytica, 1981, 30: 323–326
[6]Luis F A, Natal A V. Heritability and correlations among traits in four- way soybean crosses. Euphytica, 2004, 136: 81–91
[7]Li Y(李莹). Studies on the yield constitutive factors in soybean varieties. Soybean Sci (大豆科学), 1984, 3(3): 209–214 (in Chinese with English abstract)
[8]Song S-H(宋书宏), Zhao Y-L(赵亚玲), Wang P(王萍), He Z-M(河锺明). Research progress of relationships between yield and yield related traits. Rain Fed Crops (杂粮作物), 2006, 26(2): 112–113 (in Chinese)
[9]Cheng B-R(程宝荣), Jin Y-C(金英琛), Li Y(李颖). Relationships among yield and plant height and weather conditions in oybean. Heilongjiang Weather (黑龙江气象), 1996, 46(2): 22–33 (in Chinese)
[10]Huang Z-W(黄中文), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Dynamic analysis of biomass accumulation and partition in soybean. Acta Agron Sin (作物学报), 2009, 35(8): 1483–1490 (in Chinese with English abstract)
[11]Wang L-Z(王连铮), Wang J-L(王金陵). Soybean Genetics and Breeding (大豆遗传育种学). Beijing: Science Press, 1992. pp 334–339 (in Chinese)
[12]Aanderud Z T, Bledsoe C S, Richards J H. Contribution of relative growth rate to root foraging by annual and perennial grasses from California oak woodlands. Oecologia, 2003, 136: 424–430
[13]Huang Z-W(黄中文), Zhao T-J(赵团结), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Correlation and QTL mapping of biomass accumulation, apparent harvest index, and yield in soybean. Acta Agron Sin (作物学报), 2008, 34(6): 944–951 (in Chinese with English abstract)
[14]Huang Z-W(黄中文), Zhao T-J(赵团结), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Indicators of lodging resistance and related QTL analysis in soybean. Acta Agron Sin (作物学报), 2008, 34(4): 605–611 (in Chinese with English abstract)
[15]Board J E, Modali H. Dry matter accumulation predictors for optimal yield in soybean. Crop Sci, 2005, 45: 1790–1799
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[13] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[14] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[15] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!