欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (08): 1219-1225.

• 研究论文 •    下一篇

基于水稻冠层光谱特征构建粳型水稻籽粒蛋白质含量预测模型

周冬琴;朱艳*;姚霞;田永超;曹卫星   

  1. 南京农业大学/江苏省信息农业高技术研究重点实验室,农业部作物生长调控重点开放实验室,江苏南京210095
  • 收稿日期:2006-10-30 修回日期:1900-01-01 出版日期:2007-08-12 网络出版日期:2007-08-12
  • 通讯作者: 朱艳

Estimating Grain Protein Content with Canopy Spectral Reflectance in Rice

ZHOU Dong-Qin,ZHU Yan*,YAO Xia,TIAN Yong-Chao,CAO Wei-Xing   

  1. Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Key Laboratory of Crop Growth Regulation of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2006-10-30 Revised:1900-01-01 Published:2007-08-12 Published online:2007-08-12
  • Contact: ZHU Yan

摘要:

水稻籽粒蛋白质含量是评价稻米品质的主要指标之一。本文以不同施氮水平下的4年田间试验为基础,系统分析了水稻成熟籽粒蛋白质含量与不同时期冠层反射光谱的相关性。结果显示,籽粒蛋白质含量与可见光波段(460~710 nm) 反射率呈负相关,与近红外波段(760~1 220 nm) 反射率呈正相关,其中孕穗期冠层单波段反射率与成熟籽粒蛋白质含量的相关性最高,在16个波段中以760 nm波段反射率与籽粒蛋白质含量的拟合效果最好,复相关系数达0.795。进一步分析比值植被指数、差值植被指数、归一化植被指数和红边参数等光谱参数与成熟籽粒蛋白质含量的相关性,运用线性逐步回归分析方法对相关拟合较好的16个参数进行筛选,建立了水稻成熟籽粒蛋白质含量(GPC)监测模型,GPC=-0.15× DVI(1 500, 950) + 3.00。利用不同年份不同品种及不同施氮水平下的观测数据对模型进行检验,预测值和实测值的精确度为0.56~0.86,准确度为0.85~1.18,根均方差(RMSE)为3.51%~19.91%,表明模型预测值与实测值之间符合度较高,对水稻成熟籽粒蛋白质含量具有较好的预测性。

关键词: 水稻籽粒, 蛋白质含量, 反射光谱, 植被指数

Abstract:

Grain protein content is a key index for evaluating rice quality. We investigated the quantitative relationships between grain protein content and canopy reflectance spectra at different growth stages in rice (Oryza sativa L.) on the basis of the data from the field experiments involving different cultivars and nitrogen levels in four years. Experiment 1 and 2 were both conducted with one cultivar, Wuxiangjing 9, and five N application levels of 0, 75, 150, 225, and 300 kg ha-1 in 2002 and 2003. Experiment 3 included three cultivars (Wuxiangjing 9, Huajing 2, Nipponbare) with four N application levels of 0, 105, 210, and 315 kg ha-1 in 2004. Experiment 4 was designed with two cultivars (Wuxiangjing 14, 27123), and four N application levels of 0, 90, 270, and 420 kg ha-1 in 2005. Canopy spectral reflectance (460–1 650 nm) date at jointing, booting, heading, filling, and ripening stages of rice in the different field experiments were measured with MSR-16 multi-spectral radiometer, and corresponding leaf area index and grain protein content were also determined. Then the relationships of grain protein content to canopy reflectance of single band and all two-band combinations were analyzed.
The results showed that there were significant negative correlation between grain protein content and canopy spectral reflectance at 460–710 nm and positive correlation at 760–1 220 nm after jointing, with best performance from the relationship at 760 nm and booting stage. The relationships of grain protein content to the ratio, differential and normalized difference vegetation indices of all bands and red edge parameters were also analyzed, then fifteen parameters were selected. Through step regression analysis on 16 better spectral parameters, the differential vegetation index of R1500 and R950 was found to be the best parameter for predicting grain protein content (GPC) in rice. The derived equation, GPC =0.15 × DVI (1 500, 950) + 3, was tested with the observed data from the other independent experiments. The estimation precision was 0.56–0.86, estimation accuracy was 0.85–1.18, and RMSE was 3.51%–19.9%, indicating a good fit between the predicted and observed values of grain protein content. It is concluded that the present spectral index model is feasible and useful for estimating grain protein content in rice with different cultivars and nitrogen levels.

Key words: Rice, Grain protein content, Canopy reflectance spectra, Vegetation index

[1] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[2] 李艳大, 曹中盛, 舒时富, 孙滨峰, 叶春, 黄俊宝, 朱艳, 田永超. 基于作物生长监测诊断仪的双季稻叶干重监测模型[J]. 作物学报, 2021, 47(10): 2028-2035.
[3] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[4] 吾木提·艾山江,买买提·沙吾提,陈水森,李丹. 基于GF-1/2卫星数据的冬小麦叶面积指数反演[J]. 作物学报, 2020, 46(5): 787-797.
[5] 李宗飞,苏继霞,费聪,李阳阳,刘宁宁,戴宇祥,张开祥,王开勇,樊华,陈兵. 基于高光谱数据的滴灌甜菜叶片全氮含量估算[J]. 作物学报, 2020, 46(4): 557-570.
[6] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[7] 王利民,杨玲波,刘佳,杨福刚,姚保民. GF-1和MODIS影像冬小麦长势监测指标NDVI的对比[J]. 作物学报, 2018, 44(7): 1043-1054.
[8] 吴坤,吴文雄,杨敏敏,刘红艳,郝国存,赵应忠. 白芝麻籽粒油脂、蛋白质及芝麻素含量QTL定位分析[J]. 作物学报, 2017, 43(07): 1003-1011.
[9] 黄明,王朝辉,罗来超,王森,包明,何刚,曹寒冰,刁超朋,李莎莎. 膜侧施肥对旱地小麦产量、籽粒蛋白质含量和水分利用效率的影响[J]. 作物学报, 2017, 43(06): 899-911.
[10] 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用[J]. 作物学报, 2017, 43(04): 549-557.
[11] 李豪圣,曹新有,宋健民,刘鹏,程敦公,刘爱峰,王灿国,刘建军,孙正娟. 不同小麦品种粒重和蛋白质含量的穗粒位效应分析[J]. 作物学报, 2017, 43(02): 238-252.
[12] 宁海龙,白雪莲,李文滨,薛红,庄煦,李文霞,刘春燕. 大豆四向重组自交系群体蛋白质含量与油分含量QTL定位[J]. 作物学报, 2016, 42(11): 1620-1628.
[13] 姜朋,张平平,张旭,陈小霖,姚金保,马鸿翔. 弱筋小麦宁麦9号及其衍生系的蛋白质含量遗传多样性及关联分析[J]. 作物学报, 2015, 41(12): 1828-1835.
[14] 姜延涛,许韬,段霞瑜*,周益林. 品种混种控制小麦白粉病及其对小麦产量和蛋白质含量的影响[J]. 作物学报, 2015, 41(02): 276-285.
[15] 张艳菲,王晨阳,马冬云,卢红芳,朱云集,谢迎新,郭天财. 花后渍水、高温及其复合胁迫对小麦籽粒蛋白质含量和面粉白度的影响[J]. 作物学报, 2014, 40(06): 1102-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!