欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (12): 1828-1835.doi: 10.3724/SP.J.1006.2015.01828

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

弱筋小麦宁麦9号及其衍生系的蛋白质含量遗传多样性及关联分析

姜朋,张平平,张旭,陈小霖,姚金保,马鸿翔*   

  1. 江苏省农业科学院 / 江苏省农业生物学重点实验室,江苏南京 210014
  • 收稿日期:2015-03-27 修回日期:2015-07-20 出版日期:2015-12-12 网络出版日期:2015-08-05
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-3), 江苏省农业自主创新资金项目(CX14-2002), 江苏省科技支撑计划项目(BE2013439), 引进国际农业先进科学技术计划(948计划)项目(2011-G3(2))资助。

Genetic Diversity and Association Analysis of Protein Content in Weak Gluten Wheat Ningmai 9 and Its Derived Lines

JIANG Peng,ZHANG Ping-Ping,ZHANG Xu,CHEN Xiao-Ling,YAO Jin-Bao,MA Hong-Xiang*   

  1. Jiangsu Provincial Key Laboratory for Agrobiology / Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2015-03-27 Revised:2015-07-20 Published:2015-12-12 Published online:2015-08-05

摘要:

优质弱筋专用小麦品种宁麦9号是江苏淮南麦区小麦育种的重要亲本,以其为亲本已育成15个新品种。研究宁麦9号遗传信息的传递特点及蛋白质含量的数量性状位点,对进一步利用其进行优质弱筋小麦育种具有重要意义。以宁麦9号及其117个衍生品种()为材料,利用覆盖小麦全基因组的185SSR引物对其进行基因组扫描,解析宁麦9号遗传信息在其衍生品种()中的分布特点,同时于2009201020102011连续2个生长季测定宁麦9号及其衍生品种()的籽粒及面粉蛋白质含量,应用全基因组关联作图发掘与其相关联的分子标记位点。结果显示,宁麦9号与其衍生品种()的遗传相似系数为0.55~0.88;在Neighbor-Joining聚类图中,大部分衍生一代品种首先与宁麦9号聚类,其次是衍生二代,衍生一代品种扬辐麦4号最后聚类。宁麦9号与其衍生一代和衍生二代相同等位变异频率分别为75.60%67.81%。籽粒及面粉蛋白含量在宁麦9号衍生品种()中均呈现较大变异,变异系数为5.07%~7.28%。共检测到6个与籽粒蛋白质含量关联的标记位点,其中3个连续两年均检测到;面粉蛋白质含量共有5个关联位点,其中2个连续两年检测到,包括1个同时与籽粒和面粉蛋白质含量关联。在这4个稳定的关联位点中,Xgwm539Xwmc397Xwmc468对籽粒及面粉蛋白质含量起负向调控作用,可以降低籽粒或面粉蛋白质含量。

关键词: 小麦, 蛋白质含量, 关联分析, 分子标记

Abstract:

Ningmai 9 is an elite weak gluten wheat cultivar and an important breeding parent in the south area of Huai River Valley, and 15 new cultivars have been developed and released from Ningmai 9. This study aimed at dissecting the genetic mechanism and inheritance of protein content in Ningmai 9 and its derivatives. The kernel protein content (KPC) and flour protein content (FPC) of Ningmai 9 and its 117 derivatives were evaluated in the 20092010 and 20102011 growing seasons and the QTLs associated with KPC and FPC were identified by whole genomes screening with 185 SSR markers. The genetic similarity index ranged from 0.55 to 0.88 among Ningmai 9 and its derivatives. In the Neighbor-Joining cluster tree, Ningmai 9 was clustered with most first-generation lines first, then with the second-generation lines, and Yangfumai 4 of first-generation derivative was the last one to incorporate in. The first- and second-generation derivatives inherited 75.60% and 67.81% of Ningmai 9 alleles, respectively. Great variations of KPC and FPC were observed in the Ningmai 9 derived lines with the variation coefficients ranging from 5.07% to 7.28%. Six and five QTLs were identified to be associated with KPC and FPC, respectively, of which three and two were stably detected in both years. One QTL was associated with both KPC and FPC. Three stable QTLs, Xgwm539, Xwmc397, and Xwmc468, had negative effects on KPC or FPC in Ningmai 9 and might be used for quality improvement in weak-gluten wheat breeding.

Key words: Wheat, Protein content, Association analysis, Molecular markers

[1]Prasad M, Kumar N, Kulwal P, Röder M, Balyan H, Dhaliwal H, Gupta P. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet, 2003, 106: 659–667

[2]吴云鹏, 张业伦, 肖永责, 阎俊, 张勇, 张晓科, 张利民, 夏先春, 何中虎. 小麦重要品质性状的QTL定位. 中国农业科学, 2008, 41: 331–339

Wu Y P, Zhang Y L, Xiao Y G, Yan J, Zhang Y, Zhang X K, Zhang L M, Xia X C, He Z H. QTL mapping for important quality traits in common wheat. Sci Agric Sin, 2008, 41: 331–339 (in Chinese with English abstract)

[3]沈玮囡, 王竹林, 杨睿, 李美霞, 梁子英, 奚亚军, 孙风丽, 刘曙东. 波兰小麦品系XN555×普通小麦品系中13衍生重组自交系(RILs)群体中籽粒品质相关性状QTL定位. 农业生物技术学报, 2014, 22: 561–571

Shen W N, Wang Z L, Yang R, Li M X, Liang Z Y, Xi Y J, Sun F L, Liu S D. QTL analysis of grain quality related traits using recombinant inbred lines (RILs) derived from the cross of Triticum polonicum L. line XN555 × T.aestivum L. line Zhong 13. J Agric Biotechnol, 2014, 22: 561–571 (in Chinese with English abstract)

[4]Bordes J, Ravel C, Le Gouis J, Lapierre A, Charmet G, Balfourier F. Use of a global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci, 2011, 54: 137–147

[5]Jochen C R, Manje G, Hans P M, Longin C F H, Viktor K, Erhard E, Reiner B, Christof P, Tobias W. Association mapping for quality traits in soft winter wheat. Theor Appl Genet, 2011, 122: 961–970

[6]程顺和, 郭文善, 王龙俊. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. p 264

Cheng S H, Guo W S, Wang L J. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Publishing House, 2012. p 264 (in Chinese)

[7]姚金保, 马鸿翔, 张平平, 姚国才, 杨学明, 任丽娟, 张鹏, 周淼平. 小麦优良亲本宁麦9号的研究与利用. 核农学报, 2012, 26: 17–21

Yao J B, Ma H X, Zhang P P, Yao G C, Yang X M, Ren L J, Zhang P, Zhou M P. Research of wheat elite parent Ningmai 9 and its utilization. Acta Agric Nucl Sin, 2012, 26: 17–21 (in Chinese with English abstract)

[8]姚金保, 杨学明, 姚国才, 张艳, 顾正中, 周羊梅. 弱筋小麦品种蛋白质含量的遗传分析. 麦类作物学报, 2007, 27: 1005–1009

Yao J B, Yang X M, Yao G C, Zhang Y, Gu Z Z, Zhou Y M. Inheritance of Protein Content in Weak Gluten Wheat Cultivars. J Triticeae Crops, 2007, 27: 1005–1009 (in Chinese with English abstract)

[9]张平平, 姚金保, 马庆, 马鸿翔. 小麦碱水保持力的遗传分析. 麦类作物学报, 2009, 29: 793–797

Zhang P P, Yao J B, Ma Q, Ma H X. Inheritance of solvent retention capacity in wheat. J Triticeae Crops, 2009, 29: 793–797 (in Chinese with English abstract)

[10]姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦产量构成因素的双列杂交分析. 核农学报, 2011, 25: 633–638

Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Diallel analysis for yield components of wheat. J Nucl Agric Sci, 2011, 25: 633–638 (in Chinese with English abstract)

[11]姜朋, 陈小霖, 张平平, 张鹏, 姚金保, 马鸿翔. 宁麦9号对其衍生品种的遗传贡献. 作物学报, 2014, 40: 830–837

Jiang P, Chen X L, Zhang P P, Zhang P, Yao J B, Ma H X. Genetic contribution of wheat variety Ningmai 9 to its derivates. Acta Agron Sin, 2014, 40: 830–837 (in Chinese with English abstract)

[12]Andersen J R, Lubberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554–560

[13]Somers D J, Isaac P, Edwards K. A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114

[14]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA 6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol, 2013, 30: 2725-2729

[15]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635

[16]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003

Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003 (in Chinese)

[17]姚金保, 姚国才, 杨学明, 钱存鸣, 王书文. 小麦穗部性状的配合力和遗传力分析. 上海农业学报, 2004, 20: 32–36

Yao J B, Yao G C, Yang X M, Qian C M, Wang S W. Combining ability and heritability analysis of wheat spike characters. Acta Agric Shanghai, 2004, 20: 32–36 (in Chinese with English abstract)

[18]姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦赤霉病的抗性遗传分析. 麦类作物学报, 2011, 31: 370–375

Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Genetic analysis of resistance to Fusarium head blight in wheat. J Triticeae Crops, 2011, 31: 370–375 (in Chinese with English abstract)

[19]盖红梅, 王兰芬, 游光霞, 郝晨阳, 董玉琛, 张学勇. 基于SSR标记的小麦骨干亲本育种重要性研究. 中国农业科学, 2009, 42: 1503–1511

Ge H M, Wang L F, You G X, Hao C Y, Dong Y C, Zhang X Y. Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agric Sin, 2009, 42: 1503–1511 (in Chinese with English abstract)

[20]韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009, 35: 1395–1404

Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, LiuG T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross “Triumph/Yanda 1817” andits derivatives in wheat breeding program. Acta Agron Sin, 2009, 35: 1395–1404 (in Chinese with English abstract)

[21]袁园园, 王庆专, 崔法, 张景涛, 杜斌, 王洪刚. 小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递. 作物学报, 2010, 36: 9–16

Yuan Y Y, Wang Q Z, Cui F, Zhang J T, Du B, Wang H G. Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin, 2010, 36: 9–16 (in Chinese with English abstract)

[22]李小军, 徐鑫, 刘伟华, 李秀全, 李立会. 利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传. 中国农业科学, 2009, 42: 3397–3404

Li X J, Xu X, Liu W H, Li X Q, Li L H. Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin, 2009, 42: 3397–3404 (in Chinese with English abstract)

[23]肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919–3929

Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919–3929 (in Chinese with English abstract)

[24]Hiebert C, Thomas J, McCallum B. Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method. Theor Appl Genet, 2005, 110: 1453–1457

[25]Kirigwi F M, Ginkel M V, Brown-Guedira G, Gill B S, Paulsen G M, Fritz A K. Markers associated with a QTL for grain yield in wheat under drought. Mol Breed, 2007, 20: 401–413

[26]Rasul G, Humphreys D G, Brule-Babel A, McCartney C A, Knox R E, DePauw R M, Somers D J. Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain’. Euphytica, 2009, 168: 363–378

[27]Munkvold J D, Tanaka J, Benscher D, Sorrells M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet, 2009, 119: 1223–1235

[28]Tamburic-Ilincic L, Somers D, Fedak G, Schaafsma A. Different quantitative trait loci for Fusarium resistance in wheat seedlings and adult stage in the Wuhan/Nyubai wheat population. Euphytica, 2009, 165: 453–458

[29]Bariana H S, Bansal U K, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre C L. Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica, 2010, 176: 251–260

[30]Lowe I, Jankuloski L, Chao S, Chen X M, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet, 2011, 123: 143–157

[31]Miedaner T, Würschum T, Maurer H P, Korzun V, Ebmeyer E, Reif J C. Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed, 2011, 28: 647–655

[32]Shukla S, Singh K, Patil R V, Kadam S, Bharti S, Prasad P, Singh N K, Khanna-Chopra R. Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.). Euphytica, 2015, 203: 449–467

[33]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165–1177

[34]Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206–217

[35]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341–356

[36]张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526–1535

Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin, 39: 1526–1535 (in Chinese with English abstract)

[37]Yu J, Pressoir G, Briggs W H, Bi I V, Masanori Y, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E. A unified mixed-method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208

[38]Prasad M, Varshney R K, Kumar A, Balyan H S, Sharma P C, Edwards K J, Singh H, Dhaliwal H S, Roy J K, Gupta P K. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet, 1999, 99: 341–345

[39]Olmos S, Distelfeld A, Chicaiza O, Schlatter A R, Fahima T, Echenique V, Dubcovsky J. Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet, 2003, 107: 1243–1251

[40]Li Y L, Zhou R H, Wang J, Liao X Z, Branlard G, Jia J Z. Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Mol Breed, 2012, 29: 627–643

[41]Beecher F W, Mason E, Mondal S, Awika J, Hays D, Ibrahim A. Identification of quantitative trait loci (QTLs) associated with maintenance of wheat (Triticum aestivum Desf.) quality characteristics under heat stress conditions. Euphytica, 2012, 188: 361–368

[42]Lu Q X, Lillemo M, Skinnes H, He X Y, Shi J R, Ji F, Dong Y H, Bjornstad A. Anther extrusion and plant height are associated with type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet, 2013, 126: 317–334

[43]Horevaj P, Brown-Guedira G, Milus E A. Resistance in winter wheat lines to deoxynivalenol applied into florets at flowering stage and tolerance to phytotoxic effects on yield. Plant Pathol, 2012, 61: 925–933

[44]Badea A, Eudes F, Graf R J, Laroche A, Gaudet D A, Sadasivaiah R S. Phenotypic and marker-assisted evaluation of spring and winter wheat germplasm for resistance to Fusarium head blight. Euphytica, 2008, 164: 803–19

[45]Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B. Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet, 2004, 108:477–484

[46]Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard A L, Sourdille P, Dedryver F. Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet, 2005, 110: 1401-1409

[47]Dadkhodaie N A, Karaoglou H, Wellings C R, Park R F. Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor Appl Genet, 2011, 122: 479–487

[48]Habash D Z, Bernard S, Schondelmaier J, Weyen J, Quarrie S A. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet, 2007, 114: 403–419

[49]Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson J C, Buerstmayr H. Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Theor Appl Genet, 2012, 125: 1751–1765

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[11] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!