作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1465-1474.doi: 10.3724/SP.J.1006.2011.01465
许育彬1,3,沈玉芳1,2,李世清1,2,*
XU Yu-Bin1,3,SHEN Yu-Fang1,2,LI Shi-Qing1,2,*
摘要: 为探讨大气CO2浓度升高对冬小麦花前贮存碳氮转运的影响及氮素营养的调节作用,以小偃22和小偃6号为材料,于2007—2009连续2个生长季,利用开顶式气室进行盆栽试验,对背景CO2浓度(375 μL L-1)和高CO2浓度(2007—2008年度680 μL L-1, 2008—2009年度750 μL L-1)条件下不同施氮处理的干物质和氮素在籽粒、花前地上部中的累积以及花后营养器官的转运进行了评价。2007—2008年度设4个施氮水平,分别是0、0.1、0.2和0.3 g kg-1土; 2008—2009年度设3个施氮水平,分别是0、0.15和0.30 g kg-1土。结果表明,施氮和CO2浓度升高促进了干物质和氮素在籽粒和花前营养器官的积累,增加了花前营养器官和地上部贮存干物质和氮素向籽粒的转运量,适量施氮提高了CO2浓度升高对花前营养器官干物质和氮素累积以及花后向籽粒转运的正向效应。与背景CO2浓度相比,高CO2浓度提高了花前营养器官和地上部干物质对籽粒产量的贡献率和转运率,但CO2浓度升高对花前氮素的贡献率和转运率的影响因年份和品种而异。CO2浓度升高后,2007—2008年度各营养器官和地上部,以及2008—2009年度茎鞘和穗的氮素贡献率和转运率均增加,但2008—2009年度2个品种叶片和地上部氮素贡献率在施氮时均显著降低,小偃22叶片和地上部氮素转运率在各施氮水平下以及小偃6号地上部氮素转运率在0.13 g kg-1土施氮水平下均明显增加。适量施氮也在大多数情况下增强了CO2浓度升高对营养器官干物质和氮素的贡献率和转运率的正向效应。说明CO2浓度升高后小麦产量和氮素积累增加与其促进花前干物质和氮素积累及花后向籽粒的转运密切相关。
[1]Wang X-L(王修兰), Xu S-H(徐师华), Li Y-X(李祐祥), Cui D-C(崔读昌). Physiological reaction of wheat to doubling CO2 concentration. Acta Agron Sin (作物学报), 1996, 22(3): 340–344 (in Chinese with English abstract) [2]Jiang Y-L(蒋跃林), Zhang G-Q(张庆国), Zhang S-D(张仕定), Wang G-M(王公明), Yue W(岳伟), Yao Y-G(姚玉刚). Responses of photosynthetic characteristics, stomatal conductance and transpiration of wheat to the increase of atmospheric CO2 concentration. J Anhui Agric Univ (安徽农业大学学报), 2005, 32(2): 169–173 (in Chinese with English abstract) [3]Kang S-Z(康绍忠), Zhang F-C(张富仓), Liang Y-L(梁银丽), Ma Q-L(马清林), Hu X-T(胡笑涛). Effects of soil water and the atmospheric CO2 concentration increase on evapotranspiration, photosynthesis, growth of wheat, maize and cotton. Acta Agron Sin (作物学报), 1999, 25(1): 55–63 (in Chinese with English abstract) [4]Wang J(王静), Feng Y-Z(冯永忠), Yang G-H(杨改河), Ding R-X(丁瑞霞). Responses of wheat photosynthetic characteristics to the increase of CO2 concentration. Agric Res Arid Areas (干旱地区农业研究), 2009, 27(3): 179–183 (in Chinese with English abstract) [5]Chen X(陈雄), Wu D-X(吴冬秀), Wang G-X(王根轩), Ren H-X(任红旭). Effect of elevated CO2 concentration on photosynthesis and antioxidative enzyme activities of wheat plant grown under drought condition. Chin J Appl Ecol (应用生态学报), 2006, 17(6): 881–884 (in Chinese with English abstract) [6]Li F-S(李伏生), Kang S-Z(康绍忠), Zhang F-C(张富仓). Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Chin J Appl Ecol (应用生态学报), 2003, 14(3): 387–393 (in Chinese with English abstract) [7]Dempster WF, Nelson M, Silverstone S, Allen, JP. Carbon dioxide dynamics of combined crops of wheat, cowpea, pinto beans in the laboratory biosphere closed ecological system. Adv Space Res, 2009, 43: 1229–1235 [8]Li F-S(李伏生), Kang S-Z(康绍忠). Effect of CO2 concentration, nitrogen and water on plant carbon fixation in spring wheat. Chin J Soil Sci (土壤通报), 2004, 25(5): 546–549 (in Chinese with English abstract) [9]Li F-S(李伏生), Kang S-Z(康绍忠), Zhang F-C(张富仓). Effects of CO2 enrichment, nitrogen and soil moisture on growth and dry matter accumulation of spring wheat. Chin J Eco-Agric (中国生态农业学报), 2003, 11(2): 37–40 (in Chinese with English abstract) [10]Pleijel H, Gelang J, Sild E, Danielsson H, Younis S, Karlsson P E, Wallin G, Skärby L, Selldén G. Effects of elevated carbon dioxide, ozone and water availability on spring wheat growth and yield. Physiol Plant, 2000, 108: 61–70 [11]Wu D X, Wang G X, Bai Y F, Liao J X. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric, Ecosyst Environ, 2004, 104: 493–507 [12]Högy P, Wieser H, Köhler P, Schwadorf K, Breuer J, Franzaring J, Muntifering R, Fangmeier A. Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biol, 2009, 11(suppl): 60–69 [13]Pal M, Rao L S, Jain V, Srivastava A C, Pandey R, Raj A, Singh K P. Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis. Biol Plant, 2005, 49: 467–470 [14]Yang L-X(杨连新), Wang Y-L(王余龙), Li S-F(李世峰), Huang J-Y(黄建晔), Dong G-C(董桂春), Zhu J-G(朱建国), Liu G(刘钢), Han Y(韩勇). Effects of free-air CO2 enrichment (FACE) on dry matter production and allocation in wheat. Chin J Appl Ecol (应用生态学报), 2007, 18(2): 339–346 (in Chinese with English abstract) [15]Kimball B A, Pinter P J Jr, Garcia R L, Lamorte R L, Wall G W, Hunsaker D J, Wechsung G, Wechsung F, Kartschall T. Productivity and water use of wheat under free air CO2 enrichment. Global Change Biol, 1995, 1: 429–442 [16]Manderscheid R, Burkart S, Bramm A, Weigel H J. Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. Eur J Agron, 2003, 19: 411–425 [17]Cousins A B, Bloom A J. Oxygen consumption during leaf nitrate assimilation in a C3 and C4 plant: the role of mitochondrial respiration. Plant, Cell & Environ, 2004, 27: 1537–1545 [18]Del Pozo A, Perez P, Gutierrez D, Alonso A, Morcuende R, Martinez-Carrasco R. Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environ Exp Bot, 2007, 59: 371–380 [19]Van Vuuren M M I, Robinson D, Scrimgeour C M, Raven J A, Fitter A H. Decomposition of 13C-labelled wheat root systems following growth at different CO2 concentrations. Soil Biol Biochem, 2000, 32: 404–413 [20]Smart D R, Ritchie K, Bloom A J, Bugbee B B. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations. Plant, Cell & Environ, 1998, 21: 753–763 [21]Li F-S(李伏生), Kang S-Z(康绍忠). Effects of CO2 concentration enrichment, nitrogen and water on soil nutrient content and nutrient uptake of spring wheat. Plant Nutr Fert Sci (植物营养与肥料学报), 2002, 8(3):303-309 (in Chinese with English abstract) [22]Yang L-X(杨连新), Huang J-Y(黄建晔), Li S-F(李世峰), Yang H-J(杨洪建), Zhu J-G(朱建国), Dong G-C(董桂春), Liu H-J(刘红江), Wang Y-L(王余龙). Effects of free-air CO2 enrichment on nitrogen uptake and utilization of wheat. Chin J Appl Ecol (应用生态学报), 2007, 18(3): 519–525 (in Chinese with English abstract) [23]Bencze S, Veisz O, Janda T, Bedö Z. Effects of elevated CO2 level and N and P supplies on two winter wheat varieties in the early developmental stage. Cereal Res Commun, 2000, 28: 123–130 [24]Bencze S, Veisz O, Bedö Z. Effects of high atmospheric CO2 and heat stress on phytomass, yield and grain quality of winter wheat. Cereal Res Commun, 2004, 32: 75–82 [25]Bencze S, Kerésztenyi E, Veisz O. Change in heat stress resistance in wheat due to soil nitrogen and atmospheric CO2 levels. Cereal Res Commun, 2007, 35: 229–223 [26]Asseng S, Jamieson P D, Kimball B, Pinter P, Sayre K, Bowden J W, Howden S M. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Res, 2004, 85: 85–102 [27]Jensen B, Christensen B T. Interactions between elevated CO2 and added N: effects on water use, biomass, and soil 15N uptake in wheat. Acta Agric Scandinavica (Sec B: Soil & Plant Sci), 2004, 54: 175–184 [28]Rogers G S, Milham P J, Gillings M, Conroy J P. Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO2. Aust J Plant Physiol, 1996, 23: 253–264 [29]Amthor J S. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res, 2001, 73: 1–34 [30]Adamsen F J, Wechsung G, Wechsung F, Wall G W, Kimball B A, Pinter P J, Lamorte R L, Garcia R L, Hunsaker D J, Leavitt S W. Temporal changes in soil and biomass nitrogen for irrigated wheat grown under free-air carbon dioxide enrichment (FACE). Agron J, 2005, 97: 160–168 [31]Sild E, Younis S, Pleijel H, Sellden G. Effect of CO2 enrichment on non-structural carbohydrates in leaves, stems and ears of spring wheat. Physiol Plant, 1999, 107: 60–67 [32]Zhu C W, Zhu J G, Zeng Q, Liu G, Xie Z B, Tang H Y, Cao J L, Zhao X Z. Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation. Funct Plant Biol, 2009, 36: 291–299 |
[1] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[2] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[3] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[7] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[8] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[9] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[10] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[11] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[12] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[13] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987. |
|