欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1551-1558.doi: 10.3724/SP.J.1006.2011.01551

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉质体转录活性因子基因GhPTAC的克隆及其耐盐性分析

周凯,叶武威*,王俊娟,王德龙,樊保香,王帅   

  1. 中国农业科学院棉花研究所 / 棉花生物学国家重点实验室 / 农业部棉花遗传改良重点实验室,河南安阳 455000
  • 收稿日期:2011-02-28 修回日期:2011-05-20 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 叶武威, E-mail: yeww@cricaas.com.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2008ZX08005-004)和国家“十一五”科技支撑计划项目(2006BAD13B04-1)资助。

Cloning and Salt-tolerance Analysis of Gene Plastid Transcriptionally Active (GhPTAC) from Gossypium hirsutum L.

ZHOU Kai,YE Wu-Wei*,WANG Jun-Juan,WANG De-Long,FAN Bao-Xiang,WANG Shuai   

  1. Cotton Research Institute, Chinese Academy of Agricultural Science / State Key Laboratory of Cotton Biology / Key Laboratory of Cotton Genetic Improvement of Agriculture Ministry, Anyang 455000, China
  • Received:2011-02-28 Revised:2011-05-20 Published:2011-09-12 Published online:2011-06-28
  • Contact: 叶武威, E-mail: yeww@cricaas.com.cn

摘要: 为了挖掘新的耐盐基因及调控途径,利用基因芯片技术及抑制性差减文库技术筛选到质体转录活性因子,通过RACE及RT-PCR技术克隆到该基因的cDNA全长,命名为GhPTAC。该cDNA全长1 564 bp,其中ORF 1 038 bp,推测编码345个氨基酸残基的多肽。生物信息学分析表明GhPTAC为拟南芥PTAC13同源基因,同源性60.6%。编码蛋白为转录活跃的染色体(TAC)的一个组分,参与叶绿体基因组转录终止/抗终止调节。Real-time PCR分析结果表明,GhPTAC受盐胁迫诱导上调表达,在耐盐材料中9806中表达水平明显高于盐敏感材料中S9612,这与芯片结果一致。

关键词: 陆地棉, 盐胁迫, PTAC, Real-time PCR

Abstract: To develop novel salt-tolerance genes and adjustment pathway, we screened out gene Plastid Transcriptionally Active named as GhPTAC based on salt-tolerance gene chips and salt resistance related SSH library.The result of RACE and RT-PCR showed that the cDNA full length was 1 564 bp, and ORF was 1 038 bp, which encoded 345 amino acid residues. Bioinformatics analysis showed that GhPTAC shared the identity of 60.6% with the homologous gene PTAC13 from Arabidopsis thaliana. As one part of Transcriptionally active chromosome (TAC), GhPTAC plays a part role in regulation of transcription termination/ antitermination of chloroplastid genome. The GhPTAC expression was up-regulated under salt stress induction and the expression level of GhPTAC of Zhong 9806 (salt-resistant material) was obviously higher than that Zhong S9612 (salt-sensitive material) which was measured by Real-time PCR and in accord with the arrays results.

Key words: Gossypium hirsutum, Salt stress, PTAC, Real-time PCR

[1]Li Z-J(李志杰), Sun W-Y(孙文彦), Ma W-P(马卫萍), Yin H-J(尹红娟), Li H-J(李怀军), Qu S-G(曲善功), Cao W-D(曹卫东). Review and prospects of improvement technology for saline-alkali soil. Shandong Agric Sci (山东农业科学), 2010, (2): 73–77 (in Chinese)
[2]Jiang Y-R(蒋玉蓉), Lü Y-J(吕有军), Zhu S-J(祝水金). Advance in studies of the mechanism of salt tolerance and controlling of salt damage in upland cotton. Cotton Sci (棉花学报), 2006, 18(4): 248–254 (in Chinese with English abstract)
[3]Ye W-W(叶武威), Liu J-D(刘金定). Technique and application on Salt-tolerance appraisal of cotton germplasm resources. China Cotton (中国棉花), 1998, 25(9): 34–38 (in Chinese)
[4]Xin C-S(辛承松), Dong H-Z(董合忠), Tang W(唐薇), Wen S-M(温四民). Physiological and molecular mechanisms of salt injury and salt tolerance in cotton. Cotton Sci (棉花学报), 2005, 17(5): 309–313 (in Chinese with English abstract)
[5]Zhu J J, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463–99
[6]Rana M, Mark T. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681
[7]Asish K P, Anath B D. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safety, 2005, 60: 324–349
[8]Wang D(王东), Yang J-S(杨金水). Cloning and structure analysis of salt-tolerant zinc finger protein gene from cotton. J Fudan Univ (Nat Sci)(复旦学报?自然科学版), 2002, 41(1): 42–45 (in Chinese with English abstract)
[9]Guo Y H, Yu Y P, Wang D, Wu C A, Yang D G, Huang J G, Zheng C C. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol, 2009, 183: 62–75
[10]Huang B, Jin L, Liu J-Y. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum). J Plant Physiol, 2008, 165: 214–223
[11]Huang B, Liu JY. Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochim Biophys Acta, 2006, 1759: 263–269
[12]Duan H, Li F, Wu X, Ma D, Wang M, Hou Y. Cloning and characterization of two EREBP transcription factors from cotton (Gossypium hirsutum L.). Biochemistry, 2006, 71: 285–293
[13]Qiao Z X, Huang B, Liu J Y. Molecular cloning and functional analysis of an ERF gene from cotton (Gossypium hirsutum). Biochim Biophys Acta, 2008, 1779: 122–127
[14]Jin L G, Liu J Y. Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum). Plant Physiol Biochem, 2008, 46: 46–53
[15]Pfalz J, Liere K, Kandlbinder A, Dietz K J, Oelmüller R. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell, 2006, 18: 176–197
[16]Salzman R A, Fujita T, Salzman K Z, Hasegawa P M, Bressan R A. An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates. Plant Mol Biol Rep, 1999, 17: 11–17
[17]Jiang J-X(蒋建雄), Zhang T-Z(张天真). Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci (棉花学报), 2003, 15(3): 166–167 (in Chinese with English abstract)
[18]Ye W-W(叶武威). Study on the Salinity Resistance and Resistance Gene Expression in Cotton Germplasm. PhD Dissertation of Chinese Academy of Agricultural Sciences, 2007 (in Chinese with English abstract)
[19]Ye W-W(叶武威), Zhao Y-L(赵云雷), Wang J-J(王俊娟), Fan B-X(樊保香). Construction of SSH library on root system of salinity-tolerance variety (G. hirsutum L.) under the stress of salinity. Cotton Sci (棉花学报), 2009, 21(5): 339–345 (in Chinese with English abstract)
[20]Reay P, Yamasaki K, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S. Structural and sequence comparisons arising from the solution structure of the transcription elongauctural factor NusG from Thermus thermophilus. Proteins, 2004, 1: 40–51
[21]Nikos C K, Carl R W, Christos A O. KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem Sci, 1996, 21: 425–426
[22]Xiong Y(熊延), Liu C-M(刘翠敏), Wang S-F(王淑芳), Wang N-N(王宁宁), Wang Y(王勇). Chloroplast genome and the regulation of chloroplast-encoded gene expression. Plant Physiol Commun (植物生理学通讯), 2002, 38(3): 264–269(in Chinese)
[23]Joyce L, Stephen W M, Jack G. Elongation factor NusG interacts with termination factor ρ to regulate termination and antitermination of transcription. Genes Dev, 1993, 7: 161–172
[24]Stephen W M, Jack G. Assembly of transcription elongation complexes containing the N protein of phage λ and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev, 1991, 5: 1504–512
[25]Jiang C-Q(姜超强), Li J(李杰), Liu Z-P(刘兆普), Li H-Y(李洪燕). Photosynthetic characteristics and chloroplast ultrastructure of transgenic poplar under NaCl stress. Acta Bot Boreali-Occident Sin (西北植物学报), 2010, 30(2): 301–308 (in Chinese with English abstract)
[26]Raghyendra A S, Photosynthesis: A Comprehensive Treatise. London: Cambridge University Press, 1998. pp 172–186
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[3] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[4] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[5] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[6] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[7] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
[8] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[9] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[10] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[11] 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816.
[12] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[13] 陈晓晶,刘景辉,杨彦明,赵洲,徐忠山,海霞,韩宇婷. 盐胁迫对燕麦叶片生理指标和差异蛋白组学的影响[J]. 作物学报, 2019, 45(9): 1431-1439.
[14] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[15] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!