欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2106-2110.doi: 10.3724/SP.J.1006.2011.02106

• 研究简报 • 上一篇    下一篇

利用BSMV-VIGS技术快速分析小麦TNBL1基因的抗黄矮病功能

赵丹1,2,赵继荣1,黄茜1,2,李宁1,黄占景1,2,张增艳1,*   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部作物遗传育种重点开放实验室, 北京 100081; 2河北师范大学生命科学院, 河北石家庄 050016
  • 收稿日期:2011-02-18 修回日期:2011-06-25 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781
  • 基金资助:

    本研究由国家高技术发展计划(863计划)重点项目(2006AA10A104)资助。

Functional Analysis of TNBL1 Gene in Wheat Defense Response to Barley yellow dwarf virus Using BSMV-VIGS Technique

ZHAO Dan1,2,ZHAO Ji-Rong1,HUANG Xi1,2,LI Ning1,HUANG Zhan-Jing2,ZHANG Zeng-Yan1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences / Key Laboratory of Crop Genetic and Breeding, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
  • Received:2011-02-18 Revised:2011-06-25 Published:2011-11-12 Published online:2011-09-06
  • Contact: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781

摘要: 小麦黄矮病是由蚜虫介导的大麦黄矮病毒(Barley yellow dwarf virus, BYDV)侵染引起的小麦重要病害之一。利用cDNA-AFLP分析,筛选出在抗黄矮病小麦易位系YW642中特异表达的长度为292 bp的 cDNA片段,以此片段为启始序列,利用RACE和RT-PCR技术克隆出该基因的全长cDNA序列,推导该基因编码1个NBS-LRR蛋白,将其命名为TNBL1。本研究利用大麦条纹花叶病毒(BSMV)诱导的基因沉默(virus-inducing gene silencing, VIGS)技术,快速分析TNBL1是否参与小麦抗黄矮病反应。通过PCR添加酶切位点、定向酶切与连接,将TNBL1特异的292bp片段反向整合到BSMV-γ链的多克隆位点上,获得重组载体BSMV-γ: TNBL1as,体外转录BSMV-VIGS载体的3个组分(BSMV-TNBL1as、BSMV-α和BSMV-β),等量混合、摩擦接种到抗黄矮病的小麦易位系YW642幼苗叶片上,使YW642中TNBL1基因沉默,然后接种BYDV病原进行黄矮病抗性鉴定。结果表明,TNBL1基因沉默后的YW642对BYDV敏感、显现感病症状,其体内BYDV含量较未发生基因沉默的YW642中的明显增加,证明TNBL1基因是正向调控小麦抗BYDV反应的1个重要基因。

关键词: 小麦, 中间偃麦草, 黄矮病, 病毒诱导的基因沉默, NBS-LRR

Abstract: Barley yellow dwarf virus (BYDV), transmitted by at least 25 species of aphids, causes one of the most serious virus diseases of wheat worldwide. Through cDNA-AFLP analysis, we identified a cDNA fragment with 292bp expressing in the BYDV-resistant wheat-Thinopyrun intermedium translocation line YW642, but not in susceptible wheat Zhong8601. The full-length cDNA sequence of the gene, namely TNBL1, was cloned by RACE and RT-PCR methods, which encodes a putative NBS-LRR protein. This study focused on the functional analysis of TNBL1 in wheat defense to BYDV infection using Barley stripe mosaic virus (BSMV)-based virus-inducing gene silencing method. After the specific fragment of TNBL1 was addedwith 2 restriction-enzyme sequences byPCR, and digested and ligased with the digested BSMV-γ, the recombinant BSMV-γ:TNBL1as construct was obtained. The three components of the BSMV-VIGS vectors, BSMV-TNBL1as、BSMV-α and BSMV-β were transcribed in vitro, and mixed with equal quantity and inoculated onto the first and second leaves of the resistant line YW642 seedlings at the two-leaf stage. As a result, the TNBL1 expression was obviously repressed (silenced) in YW642 treated by BSMV:TNBL1. These seedlings were further inoculated with BYDV aphids. The BYDV content was much higher in the TNBL1-silenced YW642 plants than that in the control YW642 plants without BSMV:TNBL1 treatment. Furthermore, the TNBL1-silenced YW642 plants were susceptible to BYDV infection with the viral symptom. These results indicated that the TNBL1 gene is an important gene positively involved in wheat defense response to BYDV infection.

Key words: Wheat, Barley yellow dwarf virus, Thinopyrum intermedium, Virus-induced gene silencing, NBS-LRR

[1]Zhang Z Y, Lin Z S, Xin Z Y. Research progress in BYDV resistance genes derived from wheat and its wild relatives. J Genet Genom, 2009, 36: 567–573
[2]Zhang Z Y, Xu J S, Xu Q J, Larkin P , Xin Z Y. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theor Appl Genet, 2004, 109: 433–439
[3]Dangl J L, Jones J D G. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411: 826–833
[4]Yi T-Y(易图永), Xie B-Y(谢丙炎), Zhang B-X(张宝玺), Gao B-D(高必达). Application of plant resistance gene analogs in cloning and mapping resistance genes .Biotechnol Bull (生物技术通报), 2002, (2): 16–20 (in Chinese with English abstract)
[5]Qin G-J(秦跟基), Li W-L(李万隆), Chen P-D(陈佩度). Update of resistance genes and resistance gene analogs in plants. J Nanjing Agric Univ (南京农业大学学报), 1999, 22(3): 102–107 (in Chinese with English abstract)
[6]Jones D A, Jones J D G. The roles of leucine-rich repeats in plants defences. Adv Bot Res, 1997, 24: 89–167
[7]Kajava A V. Structural diversity of leucine-rich repeat proteins. J Mol Biol, 1998, 227: 519–527
[8]Whitham S, McCormick S, Baker B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA, 1996, 93: 8776–8781
[9]Spassova M I, Prins T W, Folkertsma R T, Klein-Lankhorst R M, Hille J, Goldbach R W, Prins M. The tomato gene Sw-5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol.Breed, 2001, 7: 151–161
[10]Ratcliff F, Harrison B D, Baulcombe D C. A similarity between viral defense and gene silencing in plants. Science, 1997, 276: 1558–1560
[11]Wang H-Z(王宏芝), Li R-F(李瑞芬), Wang G-Y(王国英), Ma R-C(马荣才), Wei J-H(魏建华). Virus induced gene silence and its application in plant gene functional genomics. Prog Nat Sci (自然科学进展), 2005, 15(1): 8–14 (in Chinese)
[12]Scofield S R, Huang L, Brandt A S, Bikram S G. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol, 2005, 138: 2165–2173
[13]Zhang Z-Y(张增艳), Yao W-L(姚乌兰), Xin Z-Y(辛志勇). Advance in virus-induced gene silencing, a novel powerfully tools for functional analysis of plant genes. J Plant Genet Resour (植物遗传资源学报), 2006, 7(1): 100–105 (in Chinese with English abstract)
[14]Lu R, Martin-Hernandez A M, Peart J R, Malcuit I, Baulcombe D C. Virus-induced gene silencing in plants. Methods, 2003, 30: 296–303
[15]Holzberg S, Brosio P, Gross C, Pogue G P. Barley stripe mosaic virus-induced gene silencing in a monocot plant .Plant J, 2002, 30: 315–327
[16]Lu X-D(刘晓东), Zhang Z-Y(张增艳), Yao W-L(姚乌兰), Xin Z-Y(辛志勇). Implement of barley stripe mosaic virus-based induced gene silencing in wheat. Acta Agron Sin (作物学报), 2005, 31(11): 1518–1520 (in Chinese with English abstract)
[17]Zhou H B, Li S F, Deng Z Y, Wang X P, Chen T, Zhang J S, Chen S Y, Ling H Q, Zhang A M, Wang D W. Zhang X Q. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J, 2007, 52: 420–434
[18]Ding X S, Schneider W L, Chaluvadi S R, Mian M A R, Nelson R S. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interactions, 2006, 19, 1229–1239
[19]Vander-Linde K, Kastner C, Kumlehn J, Kahmann R, Doehlemann G. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol, 2011, 189: 471–483
[20]Zhang Z-Y(张增艳), Ma Y-Z(马有志), Xin Z-Y(辛志勇), Chen X( 陈孝), Wu D-L(武东亮), Lin Z-S(林志珊). Analysis of the chromosome constitution of wheat lines resistant to Barley yellow dwarf virus by genomic in situ hybridization. Sci Agric Sin (中国农业科学), 1998, 31(3): 1–4 (in Chinese with English abstract)
[21]Meyers B C, Dickeman A W, Michelmore R W, Sivaramakrishnan S, Sobral B W, Young N D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding super family. Plant J, 1999, 20: 317–332
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!