欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 140-147.doi: 10.3724/SP.J.1006.2012.00140

• 耕作栽培·生理生化 • 上一篇    下一篇

新疆棉花生育后期夜间增温对纤维产量和比强度的影响

田景山,虎晓兵,勾玲,罗宏海,张亚黎,赵瑞海,张旺锋*   

  1. 石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室,新疆石河子 832003
  • 收稿日期:2011-04-18 修回日期:2011-09-12 出版日期:2012-01-12 网络出版日期:2011-11-07
  • 通讯作者: 张旺锋, E-mail: zwf_shzu@163.com, zhwf_agr@shzu.edu.cn, Tel: 0993-2057326
  • 基金资助:

    本研究由教育部高等学校博士学科点专项科研基金(20070759002)和国家科技支撑计划项目(2006BAD21B02)资助。

Effects of Nighttime Temperature Increase at the Late Growth Stage on the Cotton Fiber Yield and Fiber Strength in Xinjiang

TIAN Jing-Shan,HU Xiao-Bing,GOU Ling,LUO Hong-Hai,ZHANG Ya-Li,ZHAO Rui-Hai,ZHANG Wang-Feng*   

  1. Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group / College of Agronomy, Shihezi University, Shihezi 832003, China
  • Received:2011-04-18 Revised:2011-09-12 Published:2012-01-12 Published online:2011-11-07
  • Contact: 张旺锋, E-mail: zwf_shzu@163.com, zhwf_agr@shzu.edu.cn, Tel: 0993-2057326

摘要: 选用早熟品种新陆早13和新陆早33为试验材料,设两个夜间增温(nighttime warming, NW I和NW II)处理,自然温度为对照(CK),以组装在半移动式保温箱上的远红外石英管作为增温装置,在大田中模拟夜间增温环境,调查棉花生育后期夜间增温对纤维产量和比强度的影响。结果表明,与对照相比,棉花生育后期夜间增温导致棉铃铃期缩短,单铃纤维干物质快速累积期提前,单铃皮棉产量增加。夜间增温提前棉纤维中可溶性糖进入转化期的时间,且持续期明显延长;提前纤维素累积期的起始时间,在快速累积期终止之前,≥15.0℃的夜间最低温度对快速累积期的持续时间及最大累积速率无明显影响,棉纤维发育期≥14.1℃的夜间最低温度对纤维比强度影响较小。因此,夜间最低温度是影响棉纤维中可溶性糖转化和纤维素累积特性的重要因子,进而影响单铃纤维干物质累积及单铃纤维产量。

关键词: 棉花, 夜间增温, 比强度, 可溶性糖, 纤维素

Abstract: Cotton yield and quality depend on genotype and environment interaction. Temperature is one of key factors to influence fiber synthesis at the late growth stage of cotton. In the paper, Using early-maturing cotton varieties as experimental material, increased night temperature was simulated in the field using far-infrared quartz tube set mounted in semi-mobile incubators, relative to normal night temperature treatment (control), to determine the effects of night temperature on the cotton yield and fiber strength at the late growth stage. The results showed that compared to the control, increased night temperature shortened cotton bolling period, the rapid accumulation at age of single boll fiber dry matter came earlier, and the single boll fiber yields significantly increased in the late growth stage of cotton. Increased night temperature mainly moved up the transformation from soluble sugar to fiber, and the duration was evidently extended, and also the initial time of rapid accumulation of cellulose synthesis came in advance, but the minimum night temperature ≥15.0℃ statistically had no effect on the duration of the rapid accumulation and the maximum accumulation rate before end of cellulose speedy accumulation period. Simultaneously, the fiber strength was affected slightly by minimum night temperature ≥14.1℃ during in the cotton fiber development. So the minimum temperature in the nighttime was a major factor associated with soluble sugar transformation and cellulose accumulation. Consequently, dry matter accumulation and fiber yield of single boll were closely associated with the minimum nighttime temperature.

Key words: Cotton, Nighttime warming, Fiber Strength, Soluble sugar, Cellulose

[1]Han H-J(韩慧君). Effects of climatic-ecologic factors on cotton yield and fiber quality. Sci Agric Sin (中国农业科学), 1991, 24 (5): 23–29 (in Chinese with English abstract)
[2]Zhang L-J(张丽娟), Xiong Z-W(熊宗伟), Chen B-L(陈兵林), Xue X-P(薛晓萍), Zhou Z-G(周治国). Sensitivity analysis of cotton fiber quality to climate condition. J Nat Disasters (自然灾害学报), 2006, 15 (2): 79–85 (in Chinese with English abstract)
[3]Martin L K, Haigler C H. Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose, 2004, 11: 339–349
[4]Gipson J R, Joham H E. Influence of night temperature on growth and development of cotton (Gossypium birsutum L.): II. Fiber properties. Agron J, 1968, 60: 296–298
[5]Wang Y H, Shu H M, Chen B L, McGiffen M E, Zhanf W J, Xu N Y, Zhou Z G. The rate of cellulose increase is highly related to cotton ?bre strength and is signi?cantly determined by its genetic background and boll period temperature. Plant Grow Reg, 2009, 57: 203–209
[6]Rauf S, Khan T M, Naveed A, Munir H. Modified path to high lint yield in upland cotton (Gossypium hirsutum L.) under two temperature regimes. Turk J Biol, 2007: 119–126
[7]Dong H Z, Li W J, Tang W, Li Z H, Zhang D M, Niu Y H. Yield, quality and leaf senescence of cotton grown at varying planting dates plant densities in the Yellow River Valley of China. Field Crops Res, 2006, 98: 106–115
[8]Davidonis G H, Johnson A S, Landivar J A, Fernandez C J. Cotton fiber quality is related to boll location and planting date. Agron J, 2004, 96: 42–47
[9]Guo X-X(过兴先), Zeng W(曾伟), Su Y-L(苏玉兰). The accumulation and transportation of photosynsates in cotton leaves and their relation to night temperature and fiber development. Acta Agron Sin (作物学报), 1991, 17(2): 115–122 (in Chinese with English abstract)
[10]Haigler C H. Substrate supply for cellulose synthesis and its stress sensitivity in the cotton fiber. Cellulose, 2007, 11: 339–349
[11]Gipson J R, Ray L L. Fiber elongation rates in five varieties of cotton (Gossypium hirsutum L.) as influenced by night temperature. Crop Sci, 1969, 9: 339–341
[12]Jiang G-H(蒋光华), Meng Y-L(孟亚利), Chen B-L(陈兵林), Bian H-Y(卞海云), Zhou Z-G(周治国). Effect of cotton physiological age on the fiber thickening development and fiber strength formation. Sci Agric Sin (中国农业科学), 2006, 39(2): 265–273 (in Chinese with English abstract)
[13]Bradow J M, Bauer P H, Oscar H, Sassenrath-Cole G. Quantitation of cotton fiber-quality variations arising from boll and plant growth environments. Eur J Agron, 1997, 6: 191–204
[14]Jiang G-H(蒋光华), Meng Y-L(孟亚利), Chen B-L(陈兵林), Bian H-Y(卞海云), Zhou Z-G(周治国). Effect of low temperature on physiological mechanisma of cotton fiber strength forming process. J Plant Ecol (植物生态学报), 2006, 30(2): 335–343 (in Chinese with English abstract)
[15]Shan S-H(单世华), Sun X-Z(孙学振), Zhou Z-G(周治国), Shi P(施培), Bian D-C(边栋材). Effect of temperature on cotton fibre super-molecular structure. Acta Gossypii Sin (棉花学报), 2000, 12(4): 208–211 (in Chinese with English abstract)
[16]Shu H-M(束红梅), Zhao X-H(赵新华), Zhou Z-G(周治国), Zheng M(郑密), Wang Y-H(王友华). Physiological mechanisms of variation in temperature-sensitivity of cotton fiber strength formation between two cotton cultivars. Sci Agric Sin (中国农业科学), 2009, 42(7): 2332–2341 (in Chinese with English abstract)
[17]IPCC. Climate change 2007: synthesis report. 2007, http://www.ipcc.ch/
[18]Easterling D R, Horton B, Jones P D, Peterson T C, Karl T R, Parker D E, Salinger M J, Razuvayev V, Plummer N, Jamason P, Folland C K. Maximum and minimum temperature trends for globe. Science, 1997, 227: 364–367
[19]Wang C-H(王翠花), Li X(李雄), Miao Q-L(缪启龙). Variety characteristics of daily minimum air temperature in China in recent 50 years. Sci Geogr Sin (地理科学), 2003, 23(4): 441–447 (in Chinese with English abstract)
[20]Guo Z-M(郭志梅), Miao Q-L(缪启龙), Li X(李雄). Variation characteristics of temperature over Northern China in recent 50 years. Sci Geogr Sin (地理科学), 2005, 25(4): 448–454 (in Chinese with English abstract)
[21]Liu D-X(刘德祥), Dong A-X(董安祥), Deng Z-Y(邓振镛). Impact of climate warming on agriculture in Northwest China. J Nat Resour (自然资源学报), 2005, 20(1): 119–125 (in Chinese with English abstract)
[22]Deng Z-Y(邓振镛), Wang H-L(王鹤龄), Li G-C(李国昌), Xin J-W(辛吉武), Zhang Y-F(张宇飞), Xu J-F(徐金芳). Study  on the cause of formation and countermeasure effect of climate warming on cotton produce in Hexi Corridor. J Adv Earth Sci (地球科学进展), 2008, 23(2): 160–166 (in Chinese with English abstract)
[23]Song Y-L(宋艳玲), Zhang Q(张强), Dong W-J(董文杰). Impact of climate change on cotton production in Xingjiang Autonomous Region. Chin J Agrometeorol (中国农业气象), 2004, 25(3): 15–20 (in Chinese with English abstract)
[24]Zhang Q(张强), Deng Z-Y(邓振镛), Zhao Y-D(赵映东), Qiao J(乔娟). The impacts of global climatic change on the agriculture in northwest China. Acta Ecol Sin (生态学报), 2008, 28(3): 1210–1218 (in Chinese with English abstract)
[25]Guo X-X(过兴先), Zeng W(曾伟). A study on relationship between temperature and cotton boll development in Xinjiang. Acta Agron Sin (作物学报), 1989, 15 (3): 202–212 (in Chinese with English abstract)
[26]Guo X-X(过兴先), Zeng W(曾伟), Su Y-L(苏玉兰). Study on relationship between temperature and cotton fiber development in Xinjiang. Acta Gossypii Sin (棉花学报), 1991, 3(1): 43–52 (in Chinese with English abstract)
[27]Zhang B-R(张保仁). Studies on Effect of High Temperature on Yield and Quality and Regulation in Maize (Zea mays L.). PhD Dissertation of Shandong Agricultural University, 2003 (in Chinese with English abstract)
[28]Li H-S(李合生). Principles and Techniques of Plant Physiological Experiment (植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000 (in Chinese)
[29]Xiang S-K(项时康), Yu N(余楠), Hu Y-N(胡育昌), Tang S-R(唐淑荣), Xiong Z-W(熊宗伟), Yang W-H(杨伟华). Discussion on the current situation of cotton quality in China. Acta Gossypii Sin (棉花学报), 1999, 11(1): 1–10 (in Chinese with English abstract)
[30]Wang X-Z(王秀珍), Xiao H-R(肖汉如), Lai Y(来源), Ma J-H(马建华). The effect of water conservation in minimum tillage system under potato stubble harrowed in dryland farming fields. Chin J Agrometeorol (中国农业气象), 1994, 15(2): 8–11 (in Chinese with English abstract)
[31]Coyly G G, Smith C W. Combining ability for within boll yield components in cotton (Gossyplum hirsutum). Crop Sci, 1997, 37(4): 1118–1122
[32]Shu H-M(束红梅), Wang Y-H(王友华), Chen B-L(陈兵林), Hu H-B(胡宏标), Zhang W-J(张文静), Zhou Z-G(周治国). Genotypic differences in cellulose accumulation of cotton fiber and its relationship with fiber strength. Acta Agron Sin (作物学报), 2007, 33(6): 921–926 (in Chinese with English abstract)
[33]Liu J-H(刘继华), Yin C-Y(尹承佾), Sun Q-R(孙清荣), Yang H-B(杨洪博), Yu F-Y(于凤英), Jia J-N(贾景农), Bian D-C(边栋材). Dynamic changes of cotton (Gossypum) fiber cell wall super-molecular structure during the course of fiber development and correlation with its strength. Acta Agron Sin (作物学报), 1996, 22(3): 325–330 (in Chinese with English abstract)
[34]Zhao R-H(赵瑞海), Han C-L(韩春丽), Zhang W-F(张旺锋). Super-molecular structure and its relation to quality parameters in cotton fiber. Acta Gossypii Sin (棉花学报), 2005, 17(2): 112–116 (in Chinese with English abstract)
[35]Gipson J R, Joham H E. Influence of night temperature on growth and development of cotton (Gossypium birsutum L.): I. Fruiting and boll development. Agron J, 1968, 60: 292–295
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!