欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (02): 285-292.doi: 10.3724/SP.J.1006.2012.00285

• 耕作栽培·生理生化 • 上一篇    下一篇

干旱胁迫下PEPC过表达增强水稻的耐强光能力

丁在松,周宝元,孙雪芳,赵明*   

  1. 中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点开放实验室,北京 100081
  • 收稿日期:2011-04-12 修回日期:2011-09-29 出版日期:2012-02-12 网络出版日期:2011-12-01
  • 通讯作者: 赵明, E-mail: zhaoming@caas.net.cn, Tel: 01082108752
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118605)和国家“十二五”科技支撑计划项目(2011BAD16B14)资助。

High Light Tolerance is Enhanced by Overexpressed PEPC in Rice under Drought Stress

DING Zai-Song,ZHOU Bao-Yuan,SUN Xue-Fang,ZHAO Ming*   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Ecophysiology and Cultivition, Ministry of Agriculture, Beijing 100081, China
  • Received:2011-04-12 Revised:2011-09-29 Published:2012-02-12 Published online:2011-12-01
  • Contact: 赵明, E-mail: zhaoming@caas.net.cn, Tel: 01082108752

摘要: 以过表达磷酸烯醇式丙酮酸羧化酶(PEPC)的水稻为材料,研究了不同程度干旱胁迫下开花期剑叶光合作用的光响应过程、叶绿素荧光参数、色素含量和活性氧代谢。结果表明,在干旱特别是重度干旱胁迫下,野生型水稻在强光下净光合速率迅速下降,而转Zmppc基因水稻没有明显的下降现象; 而且表示光化学活性的叶绿素荧光参数Fv/FmΦPSⅡqP下降程度低,说明PEPC增强了干旱胁迫下水稻抵御强光胁迫的能力。这可能是因为干旱胁迫下转Zmppc基因水稻玉米黄质含量高,光系统对过剩光能的耗散能力强,能够保护光系统免受过剩光能的伤害,从而减小O2?产生速率; 同时干旱胁迫下转PEPC基因水稻抗氧化酶SOD、POD和CAT活性高,能有效清除活性氧,减轻膜质过氧化。

关键词: 磷酸烯醇式丙酮酸羧化酶, 干旱, 光抑制, 叶绿素荧光参数, 活性氧代谢

Abstract: Overexpression of phosphoenolpyruvate carboxylase (PEPC) gene in transgenic rice to improve photosynthesis and stress resistance have brought extensive interest in the world. Our previous report proved that the overexpressed PEPC alleviate drought stress inhibition on photosynthesis. In the present research, photosynthetic light curve, chlorophyll a fluorescence parameters, pigment content and reactive oxygen metabolism were studied under drought stress at flowering stage in 2 lines of PEPC transgenic rice plants. The results showed that under drought especially severe drought stress, net photosynthetic rate decreased dramatically under high photosynthetic active radiation (PAR) in wild type untransformed rice, while maintained unchanged in PEPC transgenic lines under high PAR even more than 1 200 μmol m-2 s-1. And the photochemistry activities (Fv/Fm, ΦPSⅡ, qP) decreased less under drought stress in both the PEPC transgenic lines. These indicated PEPC enhanced the photoinhibition tolerance of rice under drought stress. The higher zeaxanthin content under drought stress made the PEPC transgenic rice leaves disperse more light energy as heat, thus decreased the O2? producing rate in PSII. At the same time, the SOD, POD and CAT activities were higher in PEPC transgenic rice plants under drought stress, they could effectively diminished the reactive oxygen species and reduced the membrane lipid peroxidation.

Key words: PEPC transgenic rice, Drought, Photoinhibition, Chlorophyll fluorescence parameter, Reactive oxygen metabolism

[1]Barlow E W K. The Growth and Functioning of Leaves. London: Cambridge University Press, 1988. pp 314-345

[2]Legg B J, Day W, Lawtor D W, Parkinson K J. The effect of drought on barley growth: Models and measurements showing relative importance of leaf area and photosynthetic rate. J Agric Sci, 1979, 92: 703-716

[3]Massacci A, Nabiv S M, Pietrosanti L, Nematov S K, Chemikova T N, Thor K, Leipner J. Response of photosynthesis apparatus of cotton to the onset of drought stress under field conditions by gas exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem, 2008, 46: 189-195

[4]Zhao L-Y(赵丽英), Deng X-P(邓西平), Shan L(山仑). Effects of osmotic stress on chlorophyll fluorescence parameters of wheat seedling. Chin J Appl Ecol (应用生态学报), 2005, 16(7): 1261-1264 (in Chinese with English abstract)

[5]Jiang M-Y(蒋明义), Yang W-Y(杨文英), Xu J(徐江), Chen Q-Y(陈巧云). Osmotic stress-induced oxidative injury of rice seedlings. Acta Agron Sin (作物学报), 1994, 20(6): 733-738 (in Chinese with English abstract)

[6]Dhindsa R S. Protein synthesis during rehydration of rapidly dried Tortula ruralis: evidence for oxidation injury. Plant Physiol, 1987, 85: 1094-1098

[7]Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a noninvasive indicator for rapid assessment in vivo photosynthesis. In: Schulzem E D, Calswell M M, eds. Ecophysiology of Photosynthesis. Berlin: Springer Verlag, 1994

[8]Santos M G, Ribeiro R V, Machado E C, Pimentel C. Photosynthetic parameters and leaf water potential of five common bean genotypes under water deficit. Biol Plant, 2009, 53: 229-236

[9]Schreiber U, Gademann R, Ralph P J, Larkum A W D. Assessment of photosynthetic performance of prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol, 1997, 38: 945-951

[10]Latzko E, Kelly G J. The many-faced function of phosphoenolpyruvate carboxylase in C3 plants. Physiologie Vegetale, 1983, 21: 805-815

[11]Doubnerva V, Ryslava H. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci, 2011, 180: 575-583

[12]Gonzalez M C, Sanchez R, Cejudo F J. Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 2003, 216: 985-992

[13]Sanchez R, Cejudo F J. Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol, 2003, 132: 949-957

[14]Sanchez R, Flores A, Cejudo F J. Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006, 223: 901-909

[15]Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie, 2002, 84: 1127-1135

[16]Lebouteiller B, gousset A, Pierre JN, Bleton J, Tchapla A, Maucourt M, Moing A, Rolin D, Vidal J. Physiological impacts of modulating phosphoenolpyruvate carboxylase levels in leaves and seeds of Arabidopsis thaliana. Plant Sci, 2007, 17: 265-272

[17]Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhuri S, Datta S K. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci, 2007, 172: 1204-1209

[18]Jiao D M, Huang X Q, Li X, Chi W, Kuang T Y, Zhang Q D, Ku M S B, Cho D H. Photosynthetic characteristics and tolerance to photooxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynth Res, 2002, 72: 85-93

[19]Jiao D M, Li X, Ji B H. Photoprotective effects of high level expression of C4 phosphoenolpyruvate carboxylase in transgenic rice during photoinhibition. Photosynthetica, 2005, 43: 501-508

[20]Fang L-F(方立锋), Ding Z-S(丁在松), Zhao M(赵明).Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin (作物学报), 2008, 34(7): 1220-1226 (in Chinese with English abstract)

[21]Ding Z-S(丁在松), Zhao M(赵明), Jing Y-X(荆玉祥), Li L-B(李良璧), Kuang T-Y(匡廷云). Effect of over expression of maize ppc gene on photosynthesis in transgenic rice plants. Acta Agron Sin (作物学报), 2007, 33(5): 717-722 (in Chinese with English abstract)

[22]Zhou B-Y(周宝元), Ding Z-S(丁在松), Zhao M(赵明). Alleviation of drought stress inhibition on photosynthesis by over expression of pepc gene in rice. Acta Agron Sin (作物学报), 2011, 37(1): 112-118 (in Chinese with English abstract)

[23]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87-92

[24]Bradford M M. A rapid and sensitive method for the quantification of microgram quantity of protein utilizing the principle of protein dye binding. Anal Biochem, 1976, 72: 248-254

[25]Giannopolitis S, Ries S K. Superoxide dismutase: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314

[26]Cakmak I, Marschner H. Magnesium deficiency and high light intensityenhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 1992, 98: 1222-1227

[27]Lin Z-F(林植芳), Li S-S(李双顺), Lin G-Z(林桂珠), Sun G-C(孙谷畴), Guo J-Y(郭俊彦). Superoxide dismutaseactivity and lipid peroxidation in relation to senescence of rice leaves. Acta Bot Sin (植物学报), 1984, 26(6): 605-615 (in Chinese)

[28]Wang A-G(王爱国), Luo G-H(罗广华). Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun (植物生理学通讯), 1990, (6): 55-57 ( in Chinese with English abstract)

[29]Zhao S-J(赵世杰). Experimental Guide for Plant Physiology (植物生理学实验指导). Beijing: Chinese Agricultural Science and Technology Press, 2000 (in Chinese)

[30]Bilger W, Bjorrkman O, Thayer S S. Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of Xanthophyll cycle components in cotton leaves. Plant Physiol, 1989, 91: 542-551

[31]Zhang Q(张谦), Jiao D-M(焦德茂), Zhang Y-H(张云华), Huang X-Q(黄雪清). Study of the protective effects in PEPC transgenic rice. Sci Agric Sin (中国农业科学), 2004, 37(12): 1812-1818

[32]Shen Y K. Some factors lim iting photosynthesis in nature. In: Baltscheffsky M ed. Current Research in Photosynthesis. Domdrecht, Netherland: Kluwer Academic Publishers, 1990, Vol. IV, 843-850

[33]Sharkey T O, Loreto F, Vassey T L. Effects of stress on photosynthesis. In: Baltscheffsky M ed. Current Research in Photosynthesis. Domdrecht, Netherland: Kluwer Academic Publishers, 1990, Vol. I, pp 549-556

[34]Wang Q(王强), Wen X-G(温晓刚), Zhang Q-D(张其德). Progress in studies on photoinhibition. Chin Bull Bot (植物学通报), 2003, 20(5): 539-548 (in Chinese with English abstract)

[35]Demmig B, Winter K, Czyger F. Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol, 1987, 84: 218-224

[36]Muller P, Li X P, Niyogi K. Non-photochemical quenching. A response to excess light energy. Plant Physiol, 2001, 125: 1558-1566

[37]Matinoia E, Rentsch D. Malate compartmentation responses to a complex metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45: 447-467

[38]Gollan T, Schurr U, Schulze E D. Stomatal responses to soil drying in relation to changes in xylem sap composition of Helianthus annuls. I. The concentration of cations, anions, amino acids in and pH of the xylem sap. Plant Cell Environ, 1992, 15: 551-560

[39]Bacon M A, Wilkinson S, Davies W J. pH-Regulated leaf cell expansion in drought plants is abscisic acid dependent. Plant Physiol, 1998, 118: 1507-1515

[40]Hager A, Holocher K. Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light dependent) pH decrease. Planta, 1994, 192: 581-589

[41]Salin M L. Toxin oxygen species and protective systems of the chloroplast. Physiol Plant, 1988, 72: 68-689

[42]Foyes C H, Lefandais M, Kunent K J. Photooxidative stress in plants. Physiol Plant, 1994, 92: 696-717

[43]Niyogi K K. Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Mol Biol, 1999, 50: 333-359

[44]Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem, 1989, 58: 79-110

[45]Cleland R F, Gracesc S C. Voltammetric detection of superoxide production by photosystem . FEB Let, 1999, 457: 348-352

[46]Fukayama H, Hatch M D, Tamai T, Tsuchida H, Sudoh S, Furbank R T, Miyao M. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res, 2003, 77: 227-239

[47]Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M. Overexpression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plant. Plant Sci, 2002, 162: 257-265
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[3] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[4] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[7] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[8] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[11] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[12] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[13] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[14] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[15] 周练, 刘朝显, 熊雨涵, 周京, 蔡一林. 质膜内在蛋白ZmPIP1;1参与玉米耐旱性和光合作用的功能分析[J]. 作物学报, 2021, 47(3): 472-480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!