欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (03): 381-393.doi: 10.3724/SP.J.1006.2012.00381

• 综述 •    下一篇

水稻稻瘟病抗病基因的结构功能和共同进化

Moytri ROYCHOWDHURY 1, 贾育林2,*,  Richard D.CARTWRIGHT1,3   

  1. 1 University of Arkansas, Cell and Molecular Biology Program, Fayetteville, AR 72701, USA; 2 USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; 3 University of Arkansas, Division of Agriculture, Cooperative Extension Service, Little Rock, AR 72204, USA
  • 收稿日期:2011-09-21 修回日期:2011-12-19 出版日期:2012-03-12 网络出版日期:2012-01-04
  • 通讯作者: JIA Yu-Lin, E-mail: yulin.jia@ars.usda.gov, Tel: 1 870-672-9300
  • 基金资助:

    This work is supported by USDA-ARS National Program NP301 project “Response of Diverse Rice Germplasm to Biotic and Abiotic Stresses project No. 6225-21000-008-00D”.

Structure, Function, and Co-evolution of Rice Blast Resistance Genes

Moytri ROYCHOWDHURY1,JIA Yu-Lin2,*, Richard D.CARTWRIGHT1,3   

  1. 1 University of Arkansas, Cell and Molecular Biology Program, Fayetteville, AR 72701, USA; 2 USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; 3 University of Arkansas, Division of Agriculture, Cooperative Extension Service, Little Rock, AR 72204, USA
  • Received:2011-09-21 Revised:2011-12-19 Published:2012-03-12 Published online:2012-01-04
  • Contact: JIA Yu-Lin, E-mail: yulin.jia@ars.usda.gov, Tel: 1 870-672-9300
  • Supported by:

    This work is supported by USDA-ARS National Program NP301 project “Response of Diverse Rice Germplasm to Biotic and Abiotic Stresses project No. 6225-21000-008-00D”.

摘要: 稻瘟病是由真菌 Magnaporthe oryzae 所致,是世界上最严重的水稻病害之一。抗病基因能够识别病原无毒蛋白而导致抗病反应。抗病基因以单基因或基因簇的形式存在,它是通过基因复制或基因多样性而产生的。近几年来,由于抗病基因的不断克隆和功能分析,使人们更好地理解和认识抗病机理。本文总结了目前抗病基因的克隆和功能分析进展,并对抗病基因的进化,抗病蛋白和病原无毒因子之间的相互作用、相互影响和进化以及无毒因子的结构进行了剖析,同时指出这些理论对植保的潜在含义。

关键词: 抗病基因, 无毒基因, 稻瘟病, 基因互作, Magnaporthe oryzae

Abstract: Rice blast disease caused by the fungal pathogen Magnaporthe oryzae is one of the most destructive rice diseases worldwide. Resistance (R) genes to blast encode proteins that detect pathogen signaling molecules encoded by M. oryzae virulence (AVR) genes. R genes can be a single copy gene or a member of clustered gene families that have evolved through duplication and diversification. Recent advances in blast R gene cloning and subsequent characterization have provided useful insights into R gene mediated signaling transduction pathways. This review summarizes recent advances in cloning and characterization of blast R genes, and presents an update on evolutionary dynamics of R proteins, their interaction and co-evolution with the signaling molecules encoded by the AVR genes, and potential implications for crop protection.

Key words: R genes, AVR genes, Blast diseaseGene interaction, Magnaporthe oryzae

[1]Wang Z, Jia Y, Lin H, Valent B, Rutger J N. Host active defense responses occur within 24 hours after pathogen inoculation in the rice blast system. Chin J Rice Sci, 2007, 14(4): 302-310

[2]Talbot N J. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 2003, 57: 177-202

[3]Kankanala P, Czymmek K, Valent B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell, 2007, 19: 706-724

[4]International Rice Research Institute (IRRI) Knowledge Bank. Rice Blast http://www.knowledgebank.irri.org/RiceDoctor/Fact_Sheets/Diseases/ Rice_Blast.htm

[5]International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800

[6]Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H, Read N D, Lee Y H, Carbone I, Brown D, Oh Y, Donofrio N, Jeong J, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L, Nicol R, Purcell S, Nusbaum C, Galagan J E, Birren B W. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434: 980-986

[7]Goto I. Genetic studies on the resistance of rice plant to the blast fungus. I. Inheritance of resistance in crosses Sensho X H-79 and Imochi-shirazu X H-79. Ann Phytopathol Soc Jpn, 1970, 36: 304-312

[8]Flor H H. Current status of the gene-for-gene concept. Annu Rev Phytopathol, 1971, 9: 275-296

[9]Ballini E, Morel J B, Droc G, Price A H, Courtois B, Nottehem J L, Tharreau D A. Genome wide meta analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact, 2008, 21: 859-868

[10]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64

[11]McClung A M, Fjellstrom R G, Bergman C J, Bormans C A, Park W D, Marchetti M A. Registration of ‘Saber’ rice. Crop Sci, 2004, 44: 693-694

[12]Hammond-Kosack K E, Jones J D. Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 573-605

[13]Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033-2045

[14]Moldenhauer K A K, Lee F N, Norman R J, Helms R S, Well R H., Dilday R H, Rohman P C, Marchetti M A. Registration of ‘Katy’ rice. Crop Sci, 1990, 30: 747-748

[15]Jones D A, Jones J D G. The role of leucine-rich repeat proteins in plant defenses. Adv Bot Res Adv Plant Pathol, 1996, 24: 89-167

[16]Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G W. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901-1914

[17]Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G W. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19: 1216-1228

[18]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 1999, 19: 55-64

[19]Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46: 794-804

[20]Wasano N, Ohgushi A, Ohba M. Mannose-specific lectin activity of parasporal proteins from a lepidoptera-specific Bacillus thuringiensis strain. Curr Microbiol, 2003, 46: 43-46

[21]Liu X, Lin F, Wang L, Pan Q. The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007, 176: 2541-2549

[22]Grant M R, Godiard L, Straube E, Ashfield T, Lewald J, Sattle R A, Innes R W, Dangl J L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995, 269: 843-846

[23]Traut T W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide binding sites. Eur J Biochem, 1994, 229: 9-19

[24]Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177: 1871-1880

[25]Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent NBS-LRR class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180: 2267-2276

[26]Jeon J S, Chen D, Yi G H, Wang G L, Ronald P C. Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol Genet Genomics, 2003, 269: 280-289

[27]Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics, 2009, 181: 1627-1638

[28]Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet, 2006, 113: 251-260

[29]Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 57: 413-425

[30]Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang, M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L. Identification of a new rice blast resistance gene, Pid3, by genome-wide comparison of paired NBS-LRR genes and their pseudo gene alleles between the two sequenced rice genomes. Genetics, 2009, 182: 1303-1311

[31]Chen J, Shi Y, Liu W, Chai R, Fu Y, Zhuang J, Wu J. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics, 2011, 38: 209-216

[32]Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998-1001

[33]Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64: 498-510

[34]Fujii K, Hayano-Saito Y, Saito K, Sugiura N, Hayashi N, Tsuji T, Izawa T, Iwasaki M. Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1, in rice. Breed Sci, 2000, 50: 183-188

[35]Halterman D A, Wise R P. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J, 2004, 38: 215-226

[36]Rairdan G J, Collier S M, Sacco M A, Baldwin T T, Boettrich T, Moffett P. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling. Plant Cell, 2008, 20: 739-751

[37]Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam Clark D, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, 66: 467-479

[38]Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma Y, Takano Y, Win J, Kamoun S. Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell, 2009, 21: 1573-1591

[39]Jia Y, Moldenhauer K A K. Development of monogenic and digenic rice lines for blast resistance genes Pi-ta, Pi-kh/Pi-ks. J Plant Reg, 2010, 4: 163-166

[40]Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q. The isolation and characterization of Pik, a rice blast resistance gene that emerged after rice domestication. New Phytologist, 2010, 189: 321-334

[41]Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122: 1017-1028

[42]Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Pathol, 2010, 175: 1-14

[43]Jia Y, McAdams S A, Bryan G T, Hershey H P, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000, 19: 4004-4014

[44]Jia Y, Martin R. Identification of a new locus Ptr (t) required for rice blast resistance gene Pi-ta mediated resistance. Mol Plant Microbe Interact, 2008, 21: 396-403

[45]Kang S, Sweigard J A, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact, 1995, 8: 939-948

[46]Ma J H, Wang L, Feng S J, Lin F, Xiao Y, Pan Q H. Identification and fine mapping of AvrPi15, a novel avirulence gene of Magnaporthe grisea. Theor Appl Genet, 2006, 113: 875-883

[47]Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 1995, 7: 1221-1233

[48]Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2019-2032

[49]Kang S, Lebrun M H, Farrall L, Valent B. Gain of virulence caused by insertion of a Pot 3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant-Microbe Interact, 2001, 14: 671-674

[50]Zhou E, Jia Y, Singh P, Correll J C, Lee F N. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet Biol, 2007, 44: 1024-1034

[51]Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang,Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact, 2009, 22: 411-420

[52]Hulbert S H, Webb C A, Smith S M, Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol, 2001, 39: 285-312

[53]Lee S, Costanzo S, Jia Y, Olsen K, Caicedo A. Evolutionary dynamics of the genomic region around the blast resistance gene Pi-ta in AA genome Oryza species. Genetics, 2009, 183: 1315-1325

[54]Costanzo S, Jia Y. Alternatively spliced transcripts of Pi-ta blast resistance gene in Oryza sativa. Plant Sci, 2009, 177: 468-478

[55]Dai Y, Jia Y, Correll J, Wang X, Wang Y. Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genet Biol, 2010, 47: 974-980

[56]Farman M L, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong S A. Analysis of the structure of the Avr1-Co39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol Plant-Microbe Interact, 2002, 15: 6-16

[57]Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Yang S, Hu L, Leung H, Mew T W, Teng P S, Wang Z, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406: 718-722

[58]Mundt C C. Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol, 2002, 40: 381-410

[59]Moffat A S. Finding new ways to fight plant diseases. Science, 2001, 292: 2270-2273

[60]Dangl J L, Jones J D G. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411: 826-833

[61]Jones J D. Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol, 2001, 4: 281-287
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[3] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[4] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[5] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[6] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[7] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[8] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[9] 向文扬,杨永庆,任秋燕,晋彤彤,王丽群,王大刚,智海剑. 大豆抗SC3候选基因的克隆及分析[J]. 作物学报, 2019, 45(12): 1822-1831.
[10] 肖湘谊,史学涛,盛浩闻,刘金灵,肖应辉. 水稻抗稻瘟病基因Pi47的精细定位和候选基因分析[J]. 作物学报, 2018, 44(7): 977-987.
[11] 王军,赵婕宇,许扬,范方军,朱金燕,李文奇,王芳权,费云燕,仲维功,杨杰. 水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用[J]. 作物学报, 2018, 44(11): 1612-1620.
[12] 姚姝,陈涛,张亚东,朱镇,赵庆勇,周丽慧,赵凌,赵春芳,王才林. 利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因[J]. 作物学报, 2017, 43(11): 1622-1631.
[13] 何心尧,郝元峰,周益林,何中虎. 麦瘟病研究进展与展望[J]. 作物学报, 2017, 43(08): 1105-1114.
[14] 李旭升,向小娇,申聪聪,杨隆维,陈凯,王小文,邱先进,朱小源,邢丹英,徐建龙. 水稻重测序核心种质资源的稻瘟病抗性鉴定与评价[J]. 作物学报, 2017, 43(06): 795-810.
[15] 朱亚军,孙强,王金明,陈凯,冯博,方雅洁,林秀云,徐建龙*. 粳稻品种吉粳809的稻瘟病抗性基因分析[J]. 作物学报, 2016, 42(11): 1638-1646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!