欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1553-1560.doi: 10.3724/SP.J.1006.2012.01553

• 综述 •    下一篇

棉花抗黄萎病机制研究进展

徐理,朱龙付,张献龙*   

  1. 华中农业大学作物遗传改良国家重点实验室,湖北武汉 430070
  • 收稿日期:2012-02-08 修回日期:2012-06-06 出版日期:2012-09-12 网络出版日期:2012-07-03
  • 通讯作者: 张献龙, E-mail: xlzhang@mail.hzau.edu.cn, Tel: 027-87280510
  • 基金资助:

    本研究由国家公益性行业(农业)专项(3-19)和国家自然科学基金项目(30971822)资助。

Research on Resistance Mechanism of Cotton to Verticillium Wilt

XU Li,ZHU Long-Fu,ZHANG Xian-Long*   

  1. National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2012-02-08 Revised:2012-06-06 Published:2012-09-12 Published online:2012-07-03
  • Contact: 张献龙, E-mail: xlzhang@mail.hzau.edu.cn, Tel: 027-87280510

摘要:

棉花黄萎病是一种土传真菌维管束病害,严重影响棉花产量和纤维品质。常规的防治手段可以局部控制但不能有效防治,采用传统的抗病育种策略培育抗病品种成效缓慢,因此对其防治一直是棉花生产上的难题。目前越来越多的研究集中在棉花对黄萎病的抗病机制方面。本文结合其他植物抗病研究进展从抗病基因介导的信号路径、乙烯在棉花与黄萎病菌互作中的作用、棉花对黄萎病菌的生理生化抗性以及棉花组织结构与黄萎病菌的抗性等4个方面总结棉花抗黄萎病的机制,以望对棉花抗病分子育种提供借鉴。

关键词: 棉花, 黄萎病, 抗病基因, 机制

Abstract:

Verticillium wilt in cotton caused by Verticillium dahliae is a soil-borne vascular disease, which results in serious loss in yield and fiber quality yearly. However, traditional strategy doesn’t work very well to control the disease but the local control, and it isn’t an efficient way to develop a new cotton variety with resistances to Verticillium wilt via the conventional method, and there are few successful reports with conventional breeding method for disease resistance improvement due to shortage of high resistance germplasm, so the control of this disease has been an obstacle in cotton production. Recently, more researches focus on the resistance mechanism of cotton to this disease. Coupled with results in other crops lately, here, we summarized the processes in cotton for controlling Verticilliumwilt based on signal transduction of R gene, the putative role of ethylene in the interaction between cotton and V. dahliae, physiological and biochemical resistance as well as host structural resistance, and from which some suggestions may be inferred for molecular breeding in disease resistance.

 

Key words: Cotton, Verticillium wilt, Resistance gene, Mechanism

[1]Jian G-L(简桂良), Zou Y-F(邹亚飞), Ma C(马存). Current status and countermeasure of verticillium wilt of cotton in China. China Cotton (中国棉花), 2003, 30: 13-14 (in Chinese)

[2]Fradin E F, Thomma B P. Physiology and molecular aspects of verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol, 2006, 7: 71-86

[3]Bhat R G, Subbarao K V. Host range specificity in Verticillium dahliae. Phytopathol, 1999, 89: 1218-1225

[4]Klosterman S J, Subbarao K V, Kang S, Veronese P, Gold S E, Thomma B P, Chen Z, Henrissat B, Lee Y H, Park J, Garcia-Pedrajas M D, Barbara D J, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte S G, Paz Z, Inderbitzin P, Hayes R J, Heiman D I, Young S, Zeng Q, Engels R, Galagan J, Cuomo C A, Dobinson K F, Ma L J. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog, 2011, 7: e1002137

[5]Kawchuk L M, Hachey J, Lynch D R, Kulcsar F, van Rooijen G, Waterer D R, Robertson A, Kokko E, Byers R, Howard R J, Fischer R, Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA, 2001, 98: 6511-6515

[6]Remy I, Wilson I A, Michnick S W. Erythropoietin receptor activation by a ligand-induced conformation change. Science, 1999, 283: 990-993

[7]Fradin E F, Zhang Z, Juarez Ayala J C, Castroverde C D, Nazar R N, Robb J, Liu C M, Thomma B P. Genetic dissection of verticillium wilt resistance mediated by tomato Ve1. Plant Physiol, 2009, 150: 320-332

[8]Fradin E F, Abd-El-Haliem A, Masini L, van den Berg G C, Joosten M H, Thomma B P. Interfamily transfer of tomato Ve1 mediates verticillium resistance in Arabidopsis. Plant Physiol, 2011, 156: 2255-2265

[9]Gao X, Wheeler T, Li Z, Kenerley C M, He P, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to verticillium wilt. Plant J, 2011, 66: 293-305

[10]Chen J-Y(陈捷胤). Cloning and Functional Analysis of GbaVd1 and Gbavd2, LRR-TM Like, Disease Resistance Genes in Gossypium Barbadense. PhD Disseratation of Chinese Academy of Agricultural Sciences, 2010 (in Chinses with English abstract)

[11]Zhang Y, Wang X, Yang S, Chi J, Zhang G, Ma Z. Cloning and characterization of a verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana. Plant Cell Rep, 2011, 30: 2085-2096

[12]Gayoso C, Pomar F, Novo-Uzal E, Merino F, de Ilarduya O M. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol, 2010, 10: 232

[13]van Loon L C, Geraats B P, Linthorst H J. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci, 2006, 11: 184-191

[14]Broekaert W F, Delaure S L, De Bolle M F, Cammue B P. The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol, 2006, 44: 393-416

[15]Bari R, Jones J D. Role of plant hormones in plant defence responses. Plant Mol Biol, 2009, 69: 473-488

[16]Stearns J C, Glick B R. Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv, 2003, 21: 193-210

[17]Zuo K J, Qin J, Zhao J Y, Ling H, Zhang L D, Cao Y F, Tang K X. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene, 2007, 391: 80-90

[18]Zuo K J, Wang J, Wu W, Chai Y, Sun X, Tang K. Identification and characterization of differentially expressed ESTs of Gossypium barbadense infected by Verticillium dahliae with suppression subtractive hybridization. Mol Biol (Mosk), 2005, 39: 214-223

[19]Xu L, Zhu L, Tu L, Guo X, Long L, Sun L, Gao W, Zhang X. Differential gene expression in cotton defence response to Verticillium dahliae by SSH. J Phytopathol, 2011, 159: 606-615

[20]Wang F X, Ma Y P, Yang C L, Zhao P M, Yao Y, Jian G L, Luo Y M, Xia G X. Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics, 2011, 11: 4296-4309

[21]Beyer E M. Ethylene metabolism during leaf abscission in cotton. Plant Physiol, 1979, 64: 971-974

[22]Veronese P, Narasimhan M L, Stevenson R A, Zhu J K, Weller S C, Subbarao K V, Bressan R A. Identification of a locus controlling verticillium disease symptom response in Arabidopsis thaliana. Plant J, 2003, 35: 574-587

[23]Pantelides I S, Tjamos S E, Paplomatas E J. Ethylene perception via ETR1 is required in arabidopsis infection by Verticillium dahliae. Mol Plant Pathol, 2010, 11: 191-202

[24]Johansson A, Staal J, Dixelius C. Early responses in the arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. Mol Plant Microbe Interact, 2006, 19: 958-969

[25]Pieterse C M, Leon-Reyes A, Van der Ent S, Van Wees S C. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009, 5: 308-316

[26]Nicholson R L, Hammerschmidt R. Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol, 1992, 30: 369-389

[27]Mace M E, Stipanovic R D, Bell A A. Toxicity and role of terpenoid phytoalexins in verticillium wilt resistance in cotton. Physiol Plant Pathol, 1985, 26: 209-218

[28]Mace M E, Stipanovic R D, Bell A A. Histochemical localization of desoxyhemigossypol, a phytoalexin in Verticillium dahliae-infected cotton stems. New Phytol, 1989, 111: 229-232

[29]Liu C J, Heinstein P, Chen X Y. Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors. Mol Plant Microbe Interact, 1999, 12: 1095-1104

[30]Joost O, Bianchini G, Bell A A, Benedict C R, Magill C W. Differential induction of 3-hydroxy-3-methylglutaryl CoA reductase in two cotton species following inoculation with verticillium. Mol Plant Microbe Interact, 1995, 8: 880-885

[31]Chen X Y, Wang M, Chen Y, Davisson V J, Heinstein P. Cloning and heterologous expression of a second (+)-delta-cadinene synthase from Gossypium arboreum. J Nat Prod, 1996, 59: 944-951

[32]Chen X Y, Chen Y, Heinstein P, Davisson V J. Cloning, expression, and characterization of (+)-delta-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys, 1995, 324: 255-266

[33]Townsend B J, Poole A, Blake C J, Llewellyn D J. Antisense suppression of a (+)-delta-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol, 2005, 138: 516-528

[34]Luo P, Wang Y H, Wang G D, Essenberg M, Chen X Y. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J, 2001, 28: 95-104

[35]Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol, 2004, 135: 507-515

[36]Huckelhoven R. Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol, 2007, 45: 101-127

[37]Ma C(马存). Researchs on Cotton Verticillium Wilt and Fusarium Wilt (棉花枯萎病和黄萎病的研究). Beijing: China Agriculture Press, 2007. pp 127-128 (in Chinese)

[38]Smit F, Dubery I A. Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochem, 1997, 44: 811-815

[39]Mcfadden H G, Chapple R, Defeyter R, Dennis E. Expression of pathogenesis-related genes in cotton stems in response to infection by Verticillium dahliae. Physiol Plant Pathol, 2001, 58: 119-131

[40]Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot, 2011, 62: 5607-5621

[41]Dubery I A, Slater V. Induced defence responses in cotton leaf disks by elicitors from Verticillium dahliae. Phytochem, 1997, 44: 1429-1434

[42]Wang H M, Lin Z X, Zhang X L, Chen W, Guo X P, Nie Y C, Li Y H. Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton. J Integre Plant Biol, 2008, 50: 174-182

[43]Jiang F, Zhao J, Zhou L, Guo W, Zhang T. Molecular mapping of Verticillium wilt resistance QTL clustered on chromosomes D7 and D9 in upland cotton. Sci China (Ser C), 2009, 52(9): 872-884

[44]Wu J-H(吴家和), Zhang X-L(张献龙), Luo X-L(罗晓丽), Nie Y-C(聂以春), Tian Y-C(田颖川), Chen Z-H(陈正华). Transgenic cotton plants of chitinase and glucanase genes and their performance of resistance to Verticillium dahliae. Acta Genet Sin (遗传学报), 2004, 31(2): 183-188 (in Chinese with English abstract)

[45]Munis M F, Tu L, Deng F, Tan J, Xu L, Xu S, Long L, Zhang X. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun, 2010, 393: 38-44

[46]Rajasekaran K, Cary J W, Jaynes J M, Cleveland T E. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotech J, 2005, 3: 545-554

[47]Tian J, Zhang X, Liang B, Li S, Wu Z, Wang Q, Leng C, Dong J, Wang T. Expression of baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L.) enhances tolerance to verticillium wilt. PLoS One, 2010, 5(12): e14218

[48]Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, Zhao J, Wei Y, Li X, Luo M, Xiao Y, Luo X, Zhang J, Xiang C, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol, 2011, 29: 453-458

[49]Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol, 2010, 10: 67
[1] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[5] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[6] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[7] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[8] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[9] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[10] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[11] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[12] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[13] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[14] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[15] 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 任桢, 刘昱茜, 顾立峰, 卢海潼, Irshad Ahmad, 焦秀荣, 孟天瑶, 周桂生. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应[J]. 作物学报, 2021, 47(4): 728-737.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!