作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1570-1582.doi: 10.3724/SP.J.1006.2012.01570
郑炜君1,2,徐兆师2,*,冯志娟2,李连城2,陈明2,柴守诚1,马有志2
ZHENG Wei-Jun1,2,XU Zhao-Shi2,*,FENG Zhi-Juan2,LI Lian-Cheng2,CHEN Ming2,CHAI Shou-Cheng1,MA You-Zhi2
摘要: 利用大豆基因组数据库,通过生物信息学手段,鉴定大豆NF-YB家族基因的全序列、定位和拷贝数,通过序列比对进行进化和分类分析。利用大豆高通量RNA测序数据、NCBI中UniGene的EST表达数据进行组织表达谱分析。结果表明,大豆基因组中含有28个NF-YB家族基因,分布于大豆的14条染色体上,系统进化树分析将其分成3类。启动子分析表明,几乎全部NF-YB家族基因的启动子区均含有逆境应答反应顺式作用元件。各个发育阶段中,多数成员至少在一个组织中表达,10个差异表达的基因中有2个在根瘤中特异表达,2个在根中特异表达,2个在根瘤中优势表达,另外4个在其他部位优势表达。研究结果促进了NF-YB家族基因的功能研究与利用。
[1]Gelinas R, Endlich B, Pfeiffer C, Yagi M, Stamatoyannopoulos G. G to A substitution in the distal CCAAT box of the A gamma-globin gene in Greek hereditary persistence of fetal haemoglobin. Nature, 1985, 313: 323-325[2]Mantovani R. A survey of 178 NF-Y binding CCAAT boxes. Nucl Acids Res, 1998, 26: 1135-1143[3]Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol, 1990, 212: 563-578[4]Forsburg S L, Guarente L. Mutational analysis of upstream activation sequence 2 of the CYC1 gene of Saccharomyces cerevisiae: a HAP2-HAP3-responsive site. Mol Cell Biol, 1988, 8: 647-654[5]Maity S N, de Crombrugghe B. Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci, 1998, 23: 174-178[6]Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene, 1999, 239: 15-27[7]Mazon M J, Gancedo J M, Gancedo C. Phosphorylation and inactivation of yeast fructose-bisphosphatase in vivo by glucose and by proton ionophores. A possible role for cAMP. Eur J Biochem, 1982, 127: 605-608[8]Pinkham J L, Guarente L. Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae. Mol Cell Biol, 1985, 5: 3410-3416[9]Dang V D, Bohn C, Bolotin-Fukuhara M, Daignan-Fornier B. The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol, 1996, 178: 1842-1849[10]Gancedo J M. Yeast carbon catabolite repression. Microbiol Mol Biol Rev, 1998, 62: 334-361[11]Gusmaroli G, Tonelli C, Mantovani R. Regulation of the CCAAT-Binding NF-Y subunits in Arabidopsis thaliana. Gene, 2001, 264: 173-185[12]Gusmaroli G, Tonelli C, Mantovani R. Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits. Gene, 2002, 283: 41-48[13]Meinke D. A homeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science, 1992, 258: 1647-1650[14]Meinke D W, Franzmann L H, Nickle T C, Yeung E C. Leafy cotyledon mutants of Arabidopsis. Plant Cell, 1994, 6: 1049-1064[15]Lotan T, Ohto M, Yee K M, West M A, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93: 1195-1205[16]Vicient C M, Bies-Etheve N, Delseny M. Changes in gene expression in the leafy cotyledon1 (lec1) and fusca3 (fus3) mutants of Arabidopsis thaliana. J Exp Bot, 2000, 51: 995-1003[17]Kwong R W, Bui A Q, Lee H, Kwong L W, Fischer R L, Goldberg R B, Harada J J. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell, 2003, 15: 5-18[18]Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, De Wald D, Kreps J, Zhu T, Wu Y. A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol, 2007, 145: 98-105[19]Chen N Z, Zhang X Q, Wei P C, Chen Q J, Ren F, Chen J, Wang X C. AtHAP3b plays a crucial role in the regulation of flowering time in Arabidopsis during osmotic stress. J Biochem Mol Biol , 2007, 40: 1083-1089[20]Li W X, Oono Y K, Zhu J H, He X J, Wu J M, Iida K, Lu X Y, Cui X P, Jin H L, Zhu J K. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell, 2008, 20: 2238-2251[21]Nelson D E, Repetti P P, Adams T R, Creelman R A, Wu J, Warner D C, Anstrom D C, Bensen R J, Castiglioni P P, Donnarummo M G, Hinchey B S, Kumimoto R W, Maszle D R, Canales R D, Krolikowski K A, Dotson S B, Gutterson N, Ratcliffe O J, Heard J E. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA, 2007, 104: 16450-16455[22]Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987-12992[23]Xiao B Z, Chen X, Xiang C B, Tang N, Zhang Q F, Xiong L Z. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant, 2009, 2: 73-83[24]Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183[25]Siefers N, Dang K K, Kumimoto R W, Bynum W E, Tayrose G, Holt B F. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol, 2009, 149: 625-641[26]Huala E, Dickerman A W, Garcia-Hernandez M, Weems D, Reiser L, LaFond F, Hanley D, Kiphart D, Zhuang M, Huang W, Mueller L A, Bhattacharyya D, Bhaya D, Sobral B W, Beavis W, Meinke D W, Town C D, Somerville C, Rhee S Y. The Arabidopsis information resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucl Acids Res , 2001, 29: 102-105[27]Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek R L, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell C R. The TIGR rice genome annotation resource: improvements and new features. Nucl Acids Res, 2007, 35(database issue): D883-D887[28]Zhang H, Jin J P, Tang L, Zhao Y, Gu X C, Gao G, Luo J C. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucl Acids Res, 2011, 39: D1114-D1117[29]Finn R D, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy S R, Sonnhammer E L L, Bateman A. Pfam: clans, web tools and services. Nucl Acids Res, 2006, 34(database issue): D247-D251[30]Guo A-Y(郭安源), Zhu Q-H(朱其惠), Chen X(陈新), Luo J-C(罗静初). GSDS: A gene structure display server. Hereditas (Beijing) (遗传), 2007, 29(8): 1023-1026 (in Chinese with Enlish abstract)[31]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol and Evol, 2007, 24: 1596-1599[32]MapInspect software. [2012-03-12] http://www.plantbreeding.wur.nl/UK/software_mapinspect.html[33]Yang S, Zhang X, Yue J X, Tian D, Chen J Q: Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genom, 2008, 280: 187-198[34]Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi A K, Khurana J P. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol, 2007, 143: 1467-1483[35]Thirumurugan T, Ito Y, Kubo T, Serizawa A, Kurata N. Identification, characterization and interaction of HAP family genes in rice. Mol Genet Genom, 2008, 279: 279-289[36]Heikoff S, Greene E A, Pietrokovski S, Bork P, Attwood T K, Hood L. Gene families: the taxonomy of protein paralogs and chimeras. Science,1997, 278: 609-614[37]Schlueter J A, Dixon P, Granger C, Grant D, Clark L, Doyle J J, Shoemaker R C. Mining EST databases to resolve evolutionary events in major crop species. Genome, 2004, 47: 868-876[38]Blanc G, Barakat A, Guyot R, Cooke R, Delseny M. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell, 2000, 12: 1093-1101[39]Wang X, Shi X, Hao B, Ge S, Luo J. Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol, 2005, 165: 937-946[40]Blanc G, Wolfe K H. Wide spread palepolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell, 2004, 16: 1667-1678[41]Zhaxybayeva O, Gogarten J P. Spliceosomal introns: new insights into their evolution. Curr Biol, 2003, 13: R764-R766 [42]Romier C, Cocchiarella F, Mantovani R, Moras D. The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y. J Biol Chem, 2003, 10, 278: 1336-1345 [43]Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155[44]Le D T, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development dand dehydration stress DNA Res, 2011, 18: 263-276[45]Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110[46]Kim S, Na J G, Hampsey M, Reinberg D. The Dr1/DRAP1 heterodimer is a global repressor of transcription in vivo. Proc Natl Acad Sci USA, 1997, 94(3): 820-825[47]Kang J Y, Choi H I, Im M Y, Kim S Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell, 2002, 14: 343-357[48]Gong W, He K, Covington M, Dinesh-Kumar S P, Snyder M, Harmer S L, Zhu Y X, Deng X W. The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant, 2008, 1: 27-41[49]Hughes M A, Dunn M A. The molecular biology of plant acclimation to low temperature. J Exp Bot, 1996, 47: 291-305[50]Yamamoto A, Mizukami Y, Sakurai H. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem, 2005, 280: 11911-11919[51]Marta R, Christiane V, Francesca F, Giraudat J, Jeffrey L. The genetics of adaptive responses to drought stress: abscisic acid dependent and abscisic acid-independent signaling component. Physiol Plant, 2005, 123: 111-119[52]Shen Q, Zhang P, Ho T H. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell, 1996, 8: 1107-1119[53]Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34: 137-148[54]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 2000, 3: 217-223[55]Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Do Choi Y, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol, 2010, 153: 185-197[56]Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, Hashimoto M, Komano T, Endo A, Okamoto T, Jikumaru Y, Kamiya Y, Terakawa T, Koshiba T. RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant Cell Physiol, 2011, 52: 1686-1696[57]Stephenson T J, McIntyre C L, Collet C, Xue G P. Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol Biol, 2007, 65: 77-92 |
[1] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[2] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[3] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[4] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[5] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[6] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[7] | 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030. |
[8] | 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081. |
[9] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[10] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[11] | 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析[J]. 作物学报, 2021, 47(4): 761-769. |
[12] | 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209. |
[13] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[14] | 王珍, 张晓莉, 孟晓静, 姚梦楠, 缪文杰, 袁大双, 朱冬鸣, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜丝裂原活化蛋白激酶7基因(BnMAPK7)上游调控因子的鉴定[J]. 作物学报, 2021, 47(12): 2379-2393. |
[15] | 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024. |
|