欢迎访问作物学报,今天是 2025年1月7日 星期二

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1752-1759.doi: 10.3724/SP.J.1006.2012.01752

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生ahFAD2A等位基因表达变异与种子油酸积累关系

黄冰艳1,2,张新友2,*,苗利娟2,高伟2,韩锁义2,董文召2,汤丰收2,刘志勇1,*   

  1. 1 中国农业大学农学与生物技术学院, 北京100193; 2河南省农业科学院经济作物研究所 / 农业部黄淮海油料作物重点实验室 / 河南省油料作物遗传改良重点实验室, 河南郑州450002
  • 收稿日期:2012-02-20 修回日期:2012-06-10 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 刘志勇, E-mail: zhiyongliu@cau.edu.cn, Tel: 010-62731211; 张新友, E-mail: haasz@sohu.com, Tel: 0371-65729560
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB109304), 国家现代农业产业技术体系建设项目(CARS-14), 河南省科技创新人才计划项目(104200510003)和河南省科技攻关重点项目(092102110044)资助。

Allelic Expression Variation of ahFAD2A and its Relationship with Oleic Acid Accumulation in Peanut

HUANG Bing-Yan1,2,ZHANG Xin-You2,*,MIAO Li-Juan2,GAO Wei2,HAN Suo-Yi2,DONG Wen-Zhao2,TANG Feng-Shou2,LIU Zhi-Yong1,*   

  1. 1 College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; 2 Industrial Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
  • Received:2012-02-20 Revised:2012-06-10 Published:2012-10-12 Published online:2012-07-27
  • Contact: 刘志勇, E-mail: zhiyongliu@cau.edu.cn, Tel: 010-62731211; 张新友, E-mail: haasz@sohu.com, Tel: 0371-65729560

摘要:

花生ahFAD2A是控制种子油酸、亚油酸含量和油亚比的关键基因。利用ahFAD2A基因特异引物检测远杂9102, 豫花9416等52个花生品种的ahFAD2A基因等位变异, 并比较其中13个品种的ahFAD2A基因序列。结果表明, 花生ahFAD2A基因存在G-A两种单核苷酸等位变异(野生型ahFAD2A-wt和突变体ahFAD2A-m), DNA序列比对结果证实, 豫花9416等10个品种(突变体)与远杂9102、延津花籽和开农白2号(野生型)相比, 在ahFAD2A基因的448 bp处存在核苷酸G-A突变。应用real-time PCR检测ahFAD2A等位基因在种子不同发育时期的表达动态显示突变体豫花9416等位基因(ahFAD2A-m)在种子发育中期表达量稍高, 种子发育后期表达量下降速度较野生型远杂9102(ahFAD2A-wt)更快。进一步测定豫花9416和远杂9102在种子不同发育时期的油酸、亚油酸积累和油亚比动态, 发现两品种间存在明显差异, 豫花9416在籽粒发育前期油酸相对含量已超过亚油酸, 油亚比大于1并逐渐增加, 而远杂9102到籽粒发育中后期油酸相对含量才高于亚油酸, 油亚比逐渐接近于1左右。

关键词: 花生, 油酸含量, 亚油酸含量, ahFAD2A, 等位变异, 等位基因表达变异

Abstract:

ahFAD2A is a key regulator controlling oleic acid content in peanut. Using ahFAD2A allelic specific primers, the allelic variations of ahFAD2A were tested in 52 peanut varieties and the DNA sequences of 13 typical varieties, including Yuanza 9102, Yuhua 9416, wt08-0932 and wt08-0934, were compared. PCR results revealed that the presence of two alleles of ahFAD2A (referred as to wild type ahFAD2A-wt andmutant ahFAD2A-m respectively) in peanut germplasm, and the G/A single nucleotide polymorphism (SNP) at 448 bp site of ahFAD2A was further confirmed by sequences comparison of 13 peanut varieties. Allelic expression variations of ahFAD2A alleles in peanut seeds were detected by Real-time PCR at different developmental stages. The results indicated that the expression level of mutant allele (ahFAD2A-m) from Yuhua 9416 was slightly higher than that of the wild type allele (ahFAD2A-wt) from Yuanza 9102 during the early to middle developmental stages (17–38 days). However, a rapid decrease in expression level was observed for the mutant allele as compared with its wild type at the late developmental stage (after 45 days). Further determination revealed that the ahFAD2A-m genotype showed higher oleic acid content than linoleic acid content with high O/L ratio (>1.0) starting at early seed developmental stages in Yuhua 9416 while the ahFAD2A-wtgenotype remained lower oleic acid content than linoleic acid content with steady O/L ratio (<1.0) until seed maturity stage in Yuanza 9102. This relationship between oleic acid accumulation and ahFAD2A allelic expression variation in peanut provide the fundamental information for genetic regulation and improvement of seed oleic acids content.

Key words: Arachis hypogaea L., Oleic acid content, Linoleic acid content, ahFAD2A, Allelic variation, Allelic expression variation

[1]Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987, 14: 7–11



[2]Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004, 108: 1492–1502



[3]Ray T K, Holly S P, Knauft D A, Abbott A G, Powell G L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12-desaturase activity. Plant Sci, 1993, 91:15–21



[4]Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet, 2000, 101: 1131–1138



[5]Lopez Y, Smith O D, Senseman S A, Rooney W L. Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Sci, 2001, 41: 51–56



[6]Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805



[7]Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000, 263: 806–811



[8]Chen Z, Wang M L, Barkley N A, Pittman R N. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep, 2010, 28: 542–548



[9]Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci, 2009, 49: 2029–2036



[10]Chu Y, Ramos L, Holbrook C C, Ozias-Akins P. Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the minicore of the U.S. peanut germplasm collection. Crop Sci, 2007, 47: 2372–2378



[11]Lei Y(雷永), Jiang H-F(姜慧芳), Wen Q-G(文奇根), Huang J-Q(黄家权), Yan L-Y(晏立英), Liao B-S(廖伯寿). Frequencies of ahFAD2A alleles in Chinese peanut mini core collection and its correlation with oleic acid content. Acta Agron Sin (作物学报), 2010, 36(11): 1864−1869 (in Chinese with English abstract)



[12]Wang M L, Sukumaran S, Barkley N A, Chen Z, Chen C Y, Guo B, Pittman R N, Stalker H T, Holbrook C C, Pederson G A, Yu J. Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet, 2011, 123: 1307–1317



[13]Bruner A C, Jung S, Abbott A G, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to Asparagine. Crop Sci, 2001, 41: 522–526



[14]Yu S-L(禹山林), Isleib T G. The inheritance of high oleic acid content in peanut of Virginia type in USA. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(1): 34–37 (in Chinese with English abstract)



[15]Han Z-Q(韩柱强), Gao G-Q(高国庆), Zhou R-Y(周瑞阳), Tang R-H (唐荣华), Zhong R-C(钟瑞春), Zhou C-Q(周翠球), He L-Q(贺梁琼). Inheritance of oleic, linoleic acid content and O /L ratio in high oleic acid Arachis hypogaea L. var. hirsuta. J Plant Genet Resour (植物遗传资源学报), 2010, 11(1): 17–22 (in Chinese with English abstract)



[16]Jiang H-F(姜慧芳), Ren X-P(任小平), Huang J-Q(黄家权), Liao B-S(廖伯寿), Lei Y(雷永). Establishment of peanut mini core collection in China and exploration of new resource with high oleat. Chin J Oil Crop Sci (中国油料作物学报) , 2008, 30(3): 294–299 (in Chinese with English abstract)



[17]Ding J-P(丁锦平), Han Z-Q(韩柱强) , Zhou R-Y(周瑞阳), Gao G-Q(高国庆), Yang Y-P(杨玉萍). Genetic analysis of oleic / linoleic (O/L) ratio in peanut. Chin J Oil Crop Sci (中国油料作物学报) , 2007, 29(3): 233–237 (in Chinese with English abstract)



[18]Yan H, Yuan W, Velculescu V E, Vogelstein B, Kinzler K W. Allelic variation in human gene expression. Science, 2002, 297: 1143



[19]Lo S H, Wang Z, Hu Y, Yang H H, Gere S, Buetow K H, Lee M P. Allelic variation in gene expression is common in the human genome. Genome Res, 2003, 13: 1855–1862



[20]Guo M, Rupe M A, Zinselmeier C, Habben J, Bowen B A, Smith O S. Allelic variation of gene expression in maize hybrids. Plant Cell, 2004, 16: 1707–1716



[21]Mikkilineni V, Rocheford T R. Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet, 2003, 106: 1326–1332



[22]Belo A, Zheng P, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genom, 2008, 279: 1–10



[23]Lopez Y, Nadaf H L, Smith O D, Simpson C E, Fritz A K. Expressed variants of Δ12-fatty acid desaturase for the high oleate trait in Spanish market-type peanut lines. Mol Breed, 2002, 9: 183–190



[24]Yu S, Pan L, Yang Q, Min P, Ren Z, Zhang H. Comparison of the Δ12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genom, 2008, 35: 679–685

[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text
838
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 838

  From Others local
  Times 8 830
  Rate 1% 99%

Abstract
305
Just accepted Online first Issue
0 0 305
  From Others local
  Times 47 258
  Rate 15% 85%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!