欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2042-2051.doi: 10.3724/SP.J.1006.2012.02042

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦TaYAB2基因的过量表达造成转基因拟南芥叶片近轴面特征趋向远轴面

赵翔宇**,谢洪涛**,陈祥彬,王帅帅,张宪省*   

  1. 山东农业大学生命科学学院 / 山东省作物生物学重点实验室 / 作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2012-01-10 修回日期:2012-06-10 出版日期:2012-11-12 网络出版日期:2012-07-27
  • 通讯作者: 张宪省, E-mail: zhangxs@sdau.edu.cn, Tel: 0538-8249418 ** 同等贡献(Contributed equally to this work)
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z150), 国家自然科学基金项目(31171475)和山东省优秀中青年科学家奖励基金(2006BS06004)资助。

Ectopic Expression of TaYAB2, a Member of YABBY Gene Family in Wheat, Causes Partial Abaxialization of Adaxial Epidermises of Leaves in Arabidopsis

ZHAO Xiang-Yu**,XIE Hong-Tao**,CHEN Xiang-Bin,WANG Shuai-Shuai,ZHANG Xian-Sheng*   

  1. State Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology / College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
  • Received:2012-01-10 Revised:2012-06-10 Published:2012-11-12 Published online:2012-07-27
  • Contact: 张宪省, E-mail: zhangxs@sdau.edu.cn, Tel: 0538-8249418 ** 同等贡献(Contributed equally to this work)

摘要:

叶片极性的建立在叶片形态建成过程中有重要作用。探讨小麦叶片发育的调控机制不仅可以丰富植株形态建成的基础知识, 也可以为小麦株型的设计提供理论依据。本研究从小麦中分离出一个YABBY基因家族成员TaYAB2, 对其序列特征、表达模式及功能进行了分析。该基因编码的蛋白在N端含有C2C2锌指结构域, C端含有YABBY结构域, 与拟南芥中AtYAB2和水稻中OsYAB2同源关系较近。RT-PCR结果显示, 该基因在大部分组织器官中广泛表达。进一步的原位杂交分析证实TaYAB2基因的转录产物在小麦苗端、幼叶、侧芽、幼穗等组织器官中高水平积累。在拟南芥中过量表达该基因能够引起转基因拟南芥叶片近轴面特征趋向远轴面。与对照相比, 转基因植株中远轴面特征决定基因FIL/YAB1YAB3KAN1的表达均呈不同程度的上调, 表明TaYAB2基因可能通过调节远轴面特征决定基因FIL/YAB1YAB3KAN1等调控叶片近-远轴极性。本研究结果有助于揭示YABBY类基因在小麦侧生器官近-远轴极性建立中的分子机制。

关键词: 近-远轴极性, 叶片发育, TaYAB2, 小麦, 转基因

Abstract:

Adaxial-abaxial polarity is an important feature of lateral organs. To study the molecular mechanism of polarity establishment, we isolated a YABBY gene, designated TaYAB2, from the young leaves of wheat. TaYAB2 has a zinc finger-like domain in the N terminus and a YABBY domain in the C terminus. Sequence comparison showed that TaYAB2 is a putative member of the YABBY gene family in wheat. Further expression analysis indicated that TaYAB2 was widely expressed in the lateral organs of wheat. Ectopic expression of TaYAB2 inArabidopsis caused the partial abaxialization of the adaxial epidermises of leaves with the promotion of the transcript levels of abaxial identity genes, for example, FIL/YAB1, YAB3, and KAN1. These results indicate that TaYAB2 affects the establishment of adaxial-abaxial polarity when ectopically expressed in Arabidopsis.

Key words: Adaxial-abaxial polarity, Leaf development, TaYAB2, Wheat, Transgene

[1]Cui X-F(崔晓峰), Huang H(黄海). Recent progress in genetic control of leaf development. Plant Physiol J (植物生理学报), 2011, 47(7): 631-640 (in Chinese with English abstract)



[2]Hudson A. Axioms and axes in leaf formation? Curr Opin Plant Biol, 1999, 2: 56-60



[3]Bowman J L. Axial patterning in leaves and other lateral organs. Curr Opin Genet Dev, 2000, 10: 399-404



[4]Bowman J L, Eshed Y, Baum S F. Establishment of polarity in angiosperm lateral organs. Trends Genet, 2002, 18: 134-141



[5]Sussex I M. Experiments on the cause of dorsaiventrality in leaves. Nature 1954, 174: 351-352



[6]Sussex I M. Morphogenesis in Solanum tuberosum L.: experimental investigation of leaf dorsoventrality and orientation in the juvenile shoot. Phytomorphology 1955, 5: 286-300



[7]Reinhardt D, Frenz M, Mandel T, Kuhlemeier C. Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development, 2005, 132: 15-26



[8]McConnell J R, Barton M K. Leaf polarity and meristem formation in Arabidopsis. Development, 1998, 125: 2935-2942



[9]Emery J F, Floyd S K, Alvarez J, Eshed Y, Hawker N P, Izhaki A, Baum S F, Bowman J L. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol, 2003, 13: 1768-1774



[10]Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J, 2007, 51: 173-184



[11]Siegfried K R, Eshed Y, Baum S F, Otsuga D, Drews G N, Bowman J L. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 1999, 126: 4117-4128



[12]Eshed Y, Baum S F, Perea J V, Bowman J L. Establishment of polarity in lateral organs of plants. Curr Biol, 2001, 11: 1251-1260



[13]Kerstetter R A, Bollman K, Taylor R A, Bomblies K, Poethig R S. KANADI regulates organ polarity in Arabidopsis. Nature, 2001, 411: 706-709



[14]McConnell J R, Emery J, Eshed Y, Bao N, Bowman J, Barton M K. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411: 709-713



[15]Pekker I, Alvarez J P, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell, 2005, 17: 2899-2910



[16]Bowman J L, Smyth D R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 1999, 126: 2387-2396



[17]Sawa S, Watanabe K, Goto K, Kanaya E, Morita E H, Okada K. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev, 1999, 13: 1079-1088



[18]Meister R J, Kotow L M, Gasser C S. SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development, 2002, 129: 4281-4289



[19]Jang S, Hur J, Kim S J, Han M J, Kim S R, An G. Ectopic expression of OsYAB1 causes extra stamens and carpels in rice. Plant Mol Biol, 2004, 56: 133-143



[20]Villanneva J M, Broadhvest J, Hauser B A, Meister R J, Schneitz K, Gasser C S. INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes Dev, 1999, 13: 3160-3169



[21]Lee J Y, Baum S F, Oh S H, Jiang C Z, Chen J C, Bowman J L. Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development, 2005, 132: 5021-5032



[22]Sarojam R, Sappl P G, Goldshmidt A, Efroni I, Floyd S K, Eshed Y, Bowman J L. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell, 2010, 22: 2113-2130



[23]Juarez M T, Twigg R W, Timmermans M C P. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533-4544



[24]Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano H Y. Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genomics, 2007, 277: 457-468



[25]Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H Y. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16: 500-509



[26]Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano H Y. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice. Plant J, 2011, 65: 77-86



[27]Zhao W(赵伟), Su H-Y(宿红艳), Wang L(王磊), Zhang X-S(张宪省). Cloning and expression analysis of TaCRC in Triticum aestivum. Acta Bot Boreal-Occident Sin (西北植物学报), 2009, 29(7): 1298-1302 (in Chinese with English abstract)



[28]Zhao W, Su H Y, Song J, Zhao X Y, Zhang X S. Ectopic expression of TaYAB1, a member of YABBY gene family in wheat, causes the partial abaxialization of the adaxial epidermises of leaves and arrests the development of shoot apical meristem in Arabidopsis. Plant Sci, 2006, 170: 364-371



[29]Zhao X Y, Liu M S, Li J R, Guan C M, Zhang X S. The Wheat TaGI1, involved in photoperoidic flowering, encodes an Arabidopsis GI ortholog. Plant Mol Biol, 2005, 58: 53-64



[30]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743



[31]Bowman J L. The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol, 2000, 3: 17-22



[32]Eshed Y, Izhaki A, Baum S F, Floyd S K, Bowman J L. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development, 2004, 131: 2997-3006



[33]Liu H L, Xu Y-Y, Xu Z-H, Chong K. A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev Genes Evol, 2007, 217: 629-637



[34]Wang A J, Tang J F, Li D Y, Chen C Y, Zhao X Y, Zhu L H. Isolation and functional analysis of LiYAB1, a YABBY family gene, from lily (Lilium longiflorum). J Plant Physiol, 2009, 166: 988-995



[35]Yamada T, Yokota S, Hirayama Y, Imaichi R, Kato M, Gasser C S. Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. Plant J, 2011, 67: 26-36



[36]Bartholmes C, Hidalgo O, Gleissberg S. Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae). Plant Biol (Stuttg), 2012, 14: 11-23



[37]Theodoris G, Inada N, Freeling M. Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development. Proc Natl Acad Sci USA, 2003, 100: 6837-6842



[38]Timmermans M C P, Hudson A, Becraft P W, Nelson T. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordial. Science, 1999, 284: 151-153



[39]Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science, 1999, 284: 154-156



[40]Byrne M E, Barley R, Curtis M, Arroyo J M, Dunham M, Hudson A, Martienssen R A. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000, 408: 967-971



[41]Sun Y, Zhou Q W, Zhang W, Fu Y L, Huang H. ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves. Planta, 2002, 214: 694-702



[42]Stahle M I, Kuehlich J, Staron L, von Arnim A G, Golz J F. YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. Plant Cell, 2009, 21: 3105-3118



[43]Husbands A Y, Chitwood D H, Plavskin Y, Timmermans M C P. Signals and prepatterns: new insights into organ polarity in plants. Genes Dev, 2009, 23: 1986-1997



[44]Higuchi M, Pischke M S, Mähönen A P, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman M R, Kakimoto T. In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci USA, 2004, 101: 8821-8826



[45]Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell, 2004, 16: 1365-1377



[46]Riefler M, Novak O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 2006, 18: 40-54

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!